首页> 外文期刊>Information Forensics and Security, IEEE Transactions on >Quality-Driven Super-Resolution for Less Constrained Iris Recognition at a Distance and on the Move
【24h】

Quality-Driven Super-Resolution for Less Constrained Iris Recognition at a Distance and on the Move

机译:质量驱动的超高分辨率,可在远处和移动中减少约束虹膜的识别

获取原文
获取原文并翻译 | 示例

摘要

Less constrained iris identification systems at a distance and on the move suffer from poor resolution and poor quality of the captured iris images, which significantly degrades iris recognition performance. This paper proposes a new signal-level fusion approach which incorporates a quality score into a reconstruction-based super-resolution process to generate a high-resolution iris image from a low-resolution and quality inconsistent video sequence of an eye. A novel approach for assessing the focus level of the iris image, which is invariant to lighting and oclusion conditions, is introduced. The focus score is combined with several other quality factors to perform the quality weighted super-resolution where the highest quality frames contribute the greatest amount of information to the resulting high-resolution images without introducing spurious high-frequency components. Experiments conducted on the Multiple Biometric Grand Challenge portal dataset show that our proposed approach outperforms the traditional best quality frame selection approach and other existing state-of-the-art signal-level and score-level fusion approaches for recognition of less constrained iris at a distance and on the move.
机译:在远距离和移动中受约束较少的虹膜识别系统遭受捕获的虹膜图像的分辨率差和质量差的问题,这大大降低了虹膜识别性能。本文提出了一种新的信号级融合方法,该方法将质量分数结合到基于重建的超分辨率过程中,以从眼睛的低分辨率和质量不一致的视频序列中生成高分辨率虹膜图像。引入了一种新颖的方法来评估可变光和遮挡条件不变的虹膜图像的聚焦水平。聚焦分数与其他几个质量因子结合起来执行质量加权的超分辨率,其中最高质量的帧为生成的高分辨率图像贡献了最大量的信息,而没有引入虚假的高频分量。在多重生物特征识别大挑战门户网站数据集上进行的实验表明,我们提出的方法优于传统的最佳质量帧选择方法和其他现有的最先进的信号水平和得分水平融合方法,可以识别出较少受约束的虹膜。距离和移动。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号