首页> 外文期刊>IEEE transactions on information forensics and security >Discriminant Correlation Analysis: Real-Time Feature Level Fusion for Multimodal Biometric Recognition
【24h】

Discriminant Correlation Analysis: Real-Time Feature Level Fusion for Multimodal Biometric Recognition

机译:判别相关分析:实时特征级融合的多峰生物特征识别。

获取原文
获取原文并翻译 | 示例

摘要

Information fusion is a key step in multimodal biometric systems. The fusion of information can occur at different levels of a recognition system, i.e., at the feature level, matching-score level, or decision level. However, feature level fusion is believed to be more effective owing to the fact that a feature set contains richer information about the input biometric data than the matching score or the output decision of a classifier. The goal of feature fusion for recognition is to combine relevant information from two or more feature vectors into a single one with more discriminative power than any of the input feature vectors. In pattern recognition problems, we are also interested in separating the classes. In this paper, we present discriminant correlation analysis (DCA), a feature level fusion technique that incorporates the class associations into the correlation analysis of the feature sets. DCA performs an effective feature fusion by maximizing the pairwise correlations across the two feature sets and, at the same time, eliminating the between-class correlations and restricting the correlations to be within the classes. Our proposed method can be used in pattern recognition applications for fusing the features extracted from multiple modalities or combining different feature vectors extracted from a single modality. It is noteworthy that DCA is the first technique that considers class structure in feature fusion. Moreover, it has a very low computational complexity and it can be employed in real-time applications. Multiple sets of experiments performed on various biometric databases and using different feature extraction techniques, show the effectiveness of our proposed method, which outperforms other state-of-the-art approaches.
机译:信息融合是多模式生物识别系统中的关键步骤。信息的融合可以发生在识别系统的不同级别,即特征级别,匹配分数级别或决策级别。但是,由于特征集包含有关输入生物特征数据的信息比分类器的匹配分数或输出决策更丰富的信息,因此,特征级融合被认为更为有效。用于识别的特征融合的目的是将来自两个或多个特征向量的相关信息组合为一个具有比任何输入特征向量更大的判别能力的信息。在模式识别问题中,我们也对分离类感兴趣。在本文中,我们提出了判别相关分析(DCA),这是一种将类关联纳入特征集相关分析的特征级融合技术。 DCA通过最大化两个特征集之间的成对相关性,并同时消除类间相关性并将相关性限制在类内来执行有效的特征融合。我们提出的方法可用于模式识别应用中,以融合从多个模态中提取的特征或组合从单个模态中提取的不同特征向量。值得注意的是,DCA是第一种在特征融合中考虑类结构的技术。而且,它具有非常低的计算复杂度,并且可以在实时应用中使用。在各种生物特征数据库上使用不同的特征提取技术进行的多组实验,证明了我们提出的方法的有效性,该方法优于其他最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号