首页> 外文期刊>IEEE transactions on information forensics and security >iPrivacy: Image Privacy Protection by Identifying Sensitive Objects via Deep Multi-Task Learning
【24h】

iPrivacy: Image Privacy Protection by Identifying Sensitive Objects via Deep Multi-Task Learning

机译:iPrivacy:通过深度多任务学习识别敏感对象,从而保护图像隐私

获取原文
获取原文并翻译 | 示例

摘要

To achieve automatic recommendation of privacy settings for image sharing, a new tool called iPrivacy (image privacy) is developed for releasing the burden from users on setting the privacy preferences when they share their images for special moments. Specifically, this paper consists of the following contributions: 1) massive social images and their privacy settings are leveraged to learn the object-privacy relatedness effectively and identify a set of privacy-sensitive object classes automatically; 2) a deep multi-task learning algorithm is developed to jointly learn more representative deep convolutional neural networks and more discriminative tree classifier, so that we can achieve fast and accurate detection of large numbers of privacy-sensitive object classes; 3) automatic recommendation of privacy settings for image sharing can be achieved by detecting the underlying privacy-sensitive objects from the images being shared, recognizing their classes, and identifying their privacy settings according to the object-privacy relatedness; and 4) one simple solution for image privacy protection is provided by blurring the privacy-sensitive objects automatically. We have conducted extensive experimental studies on real-world images and the results have demonstrated both the efficiency and effectiveness of our proposed approach.
机译:为了自动推荐用于图像共享的隐私设置,开发了一种名为iPrivacy(图像隐私)的新工具,以减轻用户在特殊时刻共享其图像时设置隐私首选项的负担。具体而言,本文包括以下方面的贡献:1)利用大量的社交图像及其隐私设置有效地学习对象与隐私的相关性,并自动识别一组对隐私敏感的对象类别。 2)开发了一种深度多任务学习算法,可以联合学习更多具有代表性的深度卷积神经网络和更具区分性的树分类器,从而可以快速准确地检测大量隐私敏感的对象类; 3)通过从正在共享的图像中检测潜在的隐私敏感对象,识别其类别并根据对象-隐私相关性识别其隐私设置,可以实现针对图像共享的隐私设置的自动推荐; 4)通过自动模糊对隐私敏感的对象,提供了一种简单的图像隐私保护解决方案。我们对真实世界的图像进行了广泛的实验研究,结果证明了我们提出的方法的效率和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号