首页> 外文期刊>IEEE Transactions on Image Processing >Restoration of blurred star field images by maximally sparse optimization
【24h】

Restoration of blurred star field images by maximally sparse optimization

机译:通过最大程度稀疏优化来恢复模糊的星空图像

获取原文
获取原文并翻译 | 示例

摘要

The problem of removing blur from, or sharpening, astronomical star field intensity images is discussed. An approach to image restoration that recovers image detail using a constrained optimization theoretic approach is introduced. Ideal star images may be modeled as a few point sources in a uniform background. It is argued that a direct measure of image sparseness is the appropriate optimization criterion for deconvolving the image blurring function. A sparseness criterion based on the l/sub p/ is presented, and candidate algorithms for solving the ensuing nonlinear constrained optimization problem are presented and reviewed. Synthetic and actual star image reconstruction examples are presented to demonstrate the method's superior performance as compared with several image deconvolution methods.
机译:讨论了从天文星场强度图像中消除模糊或锐化的问题。介绍了一种使用约束优化理论方法来恢复图像细节的图像恢复方法。理想的恒星图像可以建模为统一背景中的几个点源。有人认为,对图像稀疏度的直接测量是对图像模糊函数进行反卷积的合适优化标准。提出了一种基于l / sub p /的稀疏性准则,并提出了解决非线性约束优化问题的候选算法。给出了合成的和实际的星形图像重建示例,以证明与几种图像反卷积方法相比,该方法的优越性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号