首页> 外文期刊>IEEE Transactions on Image Processing >Pruned tree-structured vector quantization of medical images with segmentation and improved prediction
【24h】

Pruned tree-structured vector quantization of medical images with segmentation and improved prediction

机译:具有分割和改进预测功能的医学图像修剪树状结构矢量量化

获取原文
获取原文并翻译 | 示例

摘要

The authors use predictive pruned tree-structured vector quantization for the compression of medical images. Their goal is to obtain a high compression ratio without impairing the image quality, at least so far as diagnostic purposes are concerned. The authors use a priori knowledge of the class of images to be encoded to help them segment the images and thereby to reserve bits for diagnostically relevant areas. Moreover, the authors improve the quality of prediction and encoding in two additional ways: by increasing the memory of the predictor itself and by using ridge regression for prediction. The improved encoding scheme was tested via computer simulations on a set of mediastinal CT scans; results are compared with those obtained using a more conventional scheme proposed recently in the literature. There were remarkable improvements in both the prediction accuracy and the encoding quality, above and beyond what comes from the segmentation. Test images were encoded at 0.5 bit per pixel and less without any visible degradation for the diagnostically relevant region.
机译:作者使用预测性修剪树状结构矢量量化压缩医学图像。他们的目标是至少在诊断方面,获得不影响图像质量的高压缩比。作者利用要编码的图像类别的先验知识来帮助他们分割图像,从而为诊断相关区域保留位。此外,作者还通过另外两种方式提高了预测和编码的质量:通过增加预测器本身的内存以及使用岭回归进行预测。改进的编码方案通过计算机模拟对一组纵隔CT扫描进行了测试;将结果与使用文献中最近提出的更常规方案获得的结果进行比较。除了分割以外,在预测准确性和编码质量上都有显着改善。测试图像以每像素0.5位及更少的比特进行编码,对于诊断相关区域没有任何可见的退化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号