首页> 外文期刊>IEEE Transactions on Image Processing >Region-based fractal image compression using heuristic search
【24h】

Region-based fractal image compression using heuristic search

机译:使用启发式搜索的基于区域的分形图像压缩

获取原文
获取原文并翻译 | 示例

摘要

Presents work carried out on fractal (or attractor) image compression. The approach relies on the assumption that image redundancy can be efficiently exploited through self-transformability. The algorithms described utilize a novel region-based partition of the image that greatly increases the compression ratios achieved over traditional block-based partitionings. Due to the large search spaces involved, heuristic algorithms are used to construct these region-based transformations. Results for three different heuristic algorithms are given. The results show that the region-based system achieves almost double the compression ratio of the simple block-based system at a similar decompressed image quality. For the Lena image, compression ratios of 41:1 can be achieved at a PSNR of 26.56 dB.
机译:介绍了对分形(或吸引子)图像压缩进行的工作。该方法基于这样的假设:可以通过自变换来有效利用图像冗余。所描述的算法利用了图像的新颖的基于区域的分区,与传统的基于块的分区相比,该分区大大提高了压缩率。由于涉及的搜索空间很大,因此启发式算法用于构造这些基于区域的转换。给出了三种不同启发式算法的结果。结果表明,在相似的解压缩图像质量下,基于区域的系统的压缩率几乎是基于简单块的系统的两倍。对于Lena图像,在26.56 dB的PSNR时可以实现41:1的压缩率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号