Presents work carried out on fractal (or attractor) image compression. The approach relies on the assumption that image redundancy can be efficiently exploited through self-transformability. The algorithms described utilize a novel region-based partition of the image that greatly increases the compression ratios achieved over traditional block-based partitionings. Due to the large search spaces involved, heuristic algorithms are used to construct these region-based transformations. Results for three different heuristic algorithms are given. The results show that the region-based system achieves almost double the compression ratio of the simple block-based system at a similar decompressed image quality. For the Lena image, compression ratios of 41:1 can be achieved at a PSNR of 26.56 dB.
展开▼