首页> 外文期刊>IEEE Transactions on Image Processing >Probability estimation in arithmetic and adaptive-Huffman entropy coders
【24h】

Probability estimation in arithmetic and adaptive-Huffman entropy coders

机译:算术和自适应霍夫曼熵编码器中的概率估计

获取原文
获取原文并翻译 | 示例

摘要

Entropy coders, such as Huffman and arithmetic coders, achieve compression by exploiting nonuniformity in the probabilities under which a random variable to be coded takes on its possible values. Practical realizations generally require running adaptive estimates of these probabilities. An analysis of the relationship between estimation quality and the resulting coding efficiency suggests a particular scheme, dubbed scaled-count, for obtaining such estimates. It can optimally balance estimation accuracy against a need for rapid response to changing underlying statistics. When the symbols being coded are from a binary alphabet, simple hardware and software implementations requiring almost no computation are possible. A scaled-count adaptive probability estimator of the type described in this paper is used in the arithmetic coder of the JBIG and JPEG image coding standards.
机译:熵编码器(例如霍夫曼编码器和算术编码器)通过利用概率的不均匀性来实现压缩,在概率下,要编码的随机变量采用其可能值。实际实现通常需要对这些概率进行自适应估计。对估计质量与所产生的编码效率之间的关系的分析提出了一种被称为缩放计数的特定方案,用于获得这种估计。它可以最佳地平衡估计准确性与快速响应变化的基础统计数据的需求。当要编码的符号来自二进制字母时,几乎不需要计算的简单硬件和软件实现是可能的。本文所述类型的比例缩放自适应概率估计器在JBIG和JPEG图像编码标准的算术编码器中使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号