首页> 外文期刊>IEEE Transactions on Image Processing >A vector distribution model and an effective nearest neighbor search method for image vector quantization
【24h】

A vector distribution model and an effective nearest neighbor search method for image vector quantization

机译:用于图像矢量量化的矢量分布模型和有效的最近邻搜索方法

获取原文
获取原文并翻译 | 示例

摘要

In this correspondence, a modified version of Hunt's (1980) image model is used to interpret the distribution of image data vectors. The model suggests that the diagonal line of the coordinates system is a good approximation of the principal axis of the image data vector set. The validity of the model is supported by experiments. Following this suggestion, an effective nearest neighbor search method for vector quantization of image data is developed. The method is based on partitioning the vector space using hyperplanes which are perpendicular to the diagonal direction of the coordinate system. The validity of the method is assessed by analyzing its complexity and comparing its performance to those of existing algorithms on a number of images.
机译:在这种对应关系中,使用了亨特(1980)图像模型的修改版本来解释图像数据矢量的分布。该模型表明坐标系的对角线很好地近似了图像数据向量集的主轴。实验证明了该模型的有效性。根据这一建议,开发了一种用于图像数据矢量量化的有效最近邻搜索方法。该方法基于使用垂直于坐标系统对角线方向的超平面划分矢量空间的方法。通过分析其复杂性并将其性能与现有算法在许多图像上的性能进行比较,可以评估该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号