首页> 外文期刊>IEEE Transactions on Image Processing >Lossless compression of continuous-tone images via context selection, quantization, and modeling
【24h】

Lossless compression of continuous-tone images via context selection, quantization, and modeling

机译:通过上下文选择,量化和建模对连续色调图像进行无损压缩

获取原文
获取原文并翻译 | 示例

摘要

Context modeling is an extensively studied paradigm for lossless compression of continuous-tone images. However, without careful algorithm design, high-order Markovian modeling of continuous-tone images is too expensive in both computational time and space to be practical. Furthermore, the exponential growth of the number of modeling states in the order of a Markov model can quickly lead to the problem of context dilution; that is, an image may not have enough samples for good estimates of conditional probabilities associated with the modeling states. New techniques for context modeling of DPCM errors are introduced that can exploit context-dependent DPCM error structures to the benefit of compression. New algorithmic techniques of forming and quantizing modeling contexts are also developed to alleviate the problem of context dilution and reduce both time and space complexities. By innovative formation, quantization, and use of modeling contexts, the proposed lossless image coder has a highly competitive compression performance and yet remains practical.
机译:上下文建模是对连续色调图像进行无损压缩的一种广泛研究的范例。但是,如果不进行仔细的算法设计,则连续色调图像的高阶马尔可夫建模在计算时间和空间上都过于昂贵,难以实用。此外,按马尔可夫模型的顺序,建模状态数量的指数增长会很快导致上下文稀释的问题。也就是说,图像可能没有足够的样本来很好地估计与建模状态相关的条件概率。引入了用于DPCM错误的上下文建模的新技术,这些技术可以利用依赖于上下文的DPCM错误结构来受益于压缩。还开发了形成和量化建模上下文的新算法技术,以缓解上下文稀释问题并减少时间和空间复杂性。通过创新的形成,量化和使用建模上下文,所提出的无损图像编码器具有极具竞争力的压缩性能,但仍然实用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号