首页> 外文期刊>IEEE Transactions on Image Processing >Image segmentation via adaptive K-mean clustering and knowledge-based morphological operations with biomedical applications
【24h】

Image segmentation via adaptive K-mean clustering and knowledge-based morphological operations with biomedical applications

机译:通过自适应K均值聚类和基于知识的形态学运算以及生物医学应用进行图像分割

获取原文
获取原文并翻译 | 示例

摘要

Image segmentation remains one of the major challenges in image analysis. In medical applications, skilled operators are usually employed to extract the desired regions that may be anatomically separate but statistically indistinguishable. Such manual processing is subject to operator errors and biases, is extremely time consuming, and has poor reproducibility. We propose a robust algorithm for the segmentation of three-dimensional (3-D) image data based on a novel combination of adaptive K-mean clustering and knowledge-based morphological operations. The proposed adaptive K-mean clustering algorithm is capable of segmenting the regions of smoothly varying intensity distributions. Spatial constraints are incorporated in the clustering algorithm through the modeling of the regions by Gibbs random fields. Knowledge-based morphological operations are then applied to the segmented regions to identify the desired regions according to the a priori anatomical knowledge of the region-of-interest. This proposed technique has been successfully applied to a sequence of cardiac CT volumetric images to generate the volumes of left ventricle chambers at 16 consecutive temporal frames. Our final segmentation results compare favorably with the results obtained using manual outlining. Extensions of this approach to other applications can be readily made when a priori knowledge of a given object is available.
机译:图像分割仍然是图像分析中的主要挑战之一。在医学应用中,通常采用熟练的操作员来提取所需的区域,这些区域在解剖上可能是分开的,但在统计上却无法区分。这种手动处理容易受到操作者的错误和偏见,非常耗时,并且再现性差。我们基于自适应K均值聚类和基于知识的形态学运算的新颖组合,提出了一种用于分割三维(3-D)图像数据的鲁棒算法。提出的自适应K均值聚类算法能够分割强度分布平滑变化的区域。通过Gibbs随机场对区域进行建模,将空间约束纳入聚类算法。然后,根据感兴趣区域的先验解剖学知识,将基于知识的形态学运算应用于分割的区域,以识别所需区域。此提议的技术已成功应用于一系列心脏CT容积图像,以在16个连续的时间帧处生成左心室的容积。我们的最终细分结果与使用手动概述获得的结果相比具有优势。当可以使用给定对象的先验知识时,可以很容易地将此​​方法扩展到其他应用程序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号