首页> 外文期刊>IEEE Transactions on Image Processing >A fractal vector quantizer for image coding
【24h】

A fractal vector quantizer for image coding

机译:用于图像编码的分形矢量量化器

获取原文
获取原文并翻译 | 示例

摘要

We investigate the relation between VQ (vector quantization) and fractal image coding techniques, and propose a novel algorithm for still image coding, based on fractal vector quantization (FVQ). In FVQ, the source image is approximated coarsely by fixed basis blocks, and the codebook is self-trained from the coarsely approximated image, rather than from an outside training set or the source image itself. Therefore, FVQ is capable of eliminating the redundancy in the codebook without any side information, in addition to exploiting the self-similarity in real images effectively. The computer simulation results demonstrate that the proposed algorithm provides better peak signal-to-noise ratio (PSNR) performance than most other fractal-based coders.
机译:我们研究了VQ(矢量量化)与分形图像编码技术之间的关系,并提出了一种基于分形矢量量化(FVQ)的静止图像编码新算法。在FVQ中,源图像通过固定的基本块进行粗略近似,并且码本是从粗略近似的图像而不是从外部训练集或源图像本身进行自我训练的。因此,FVQ除了有效利用真实图像中的自相似性之外,还能够消除没有任何附带信息的码本中的冗余。计算机仿真结果表明,与大多数其他基于分形的编码器相比,该算法可提供更好的峰值信噪比(PSNR)性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号