首页> 外文期刊>IEEE Transactions on Image Processing >High-quality image resizing using oblique projection operators
【24h】

High-quality image resizing using oblique projection operators

机译:使用倾斜投影算子调整图像质量

获取原文
获取原文并翻译 | 示例

摘要

The standard interpolation approach to image resizing is to fit the original picture with a continuous model and resample the function at the desired rate. However, one can obtain more accurate results if one applies a filter prior to sampling, a fact well known from sampling theory. The optimal solution corresponds to an orthogonal projection onto the underlying continuous signal space. Unfortunately, the optimal projection prefilter is difficult to implement when sine or high order spline functions are used. We propose to resize the image using an oblique rather than an orthogonal projection operator in order to make use of faster, simpler, and more general algorithms. We show that we can achieve almost the same result as with the orthogonal projection provided that we use the same approximation space. The main advantage is that it becomes perfectly feasible to use higher order models (e.g. splines of degree n/spl ges/3). We develop the theoretical background and present a simple and practical implementation procedure using B-splines. Our experiments show that the proposed algorithm consistently outperforms the standard interpolation methods and that it provides essentially the same performance as the optimal procedure (least squares solution) with considerably fewer computations. The method works for arbitrary scaling factors and is applicable to both image enlargement and reduction.
机译:图像调整大小的标准插值方法是使用连续模型拟合原始图片,然后以所需的速率对功能进行重新采样。但是,如果在采样之前应用滤波器,则可以获得更准确的结果,这是采样理论众所周知的事实。最优解对应于在下面的连续信号空间上的正交投影。不幸的是,当使用正弦或高阶样条函数时,最佳投影预滤波器很难实现。我们建议使用倾斜而不是正交投影算子来调整图像大小,以便利用更快,更简单和更通用的算法。我们证明,只要使用相同的近似空间,我们就能获得与正交投影几乎相同的结果。主要优势在于,使用高阶模型(例如,度数为n / spl ges / 3的样条曲线)变得完全可行。我们发展了理论背景,并提出了使用B样条的简单实用的实现过程。我们的实验表明,所提出的算法始终优于标准插值方法,并且以更少的计算量提供了与最佳过程(最小二乘解)基本相同的性能。该方法适用于任意缩放因子,并且适用于图像放大和缩小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号