首页> 外文期刊>IEEE Transactions on Image Processing >Segmentation of textured images using a multiresolution Gaussian autoregressive model
【24h】

Segmentation of textured images using a multiresolution Gaussian autoregressive model

机译:使用多分辨率高斯自回归模型分割纹理图像

获取原文
获取原文并翻译 | 示例

摘要

We present a new algorithm for segmentation of textured images using a multiresolution Bayesian approach. The new algorithm uses a multiresolution Gaussian autoregressive (MGAR) model for the pyramid representation of the observed image, and assumes a multiscale Markov random field model for the class label pyramid. The models used in this paper incorporate correlations between different levels of both the observed image pyramid and the class label pyramid. The criterion used for segmentation is the minimization of the expected value of the number of misclassified nodes in the multiresolution lattice. The estimate which satisfies this criterion is referred to as the "multiresolution maximization of the posterior marginals" (MMPM) estimate, and is a natural extension of the single-resolution "maximization of the posterior marginals" (MPM) estimate. Previous multiresolution segmentation techniques have been based on the maximum a posterior (MAP) estimation criterion, which has been shown to be less appropriate for segmentation than the MPM criterion. It is assumed that the number of distinct textures in the observed image is known. The parameters of the MGAR model-the means, prediction coefficients, and prediction error variances of the different textures-are unknown. A modified version of the expectation-maximization (EM) algorithm is used to estimate these parameters. The parameters of the Gibbs distribution for the label pyramid are assumed to be known. Experimental results demonstrating the performance of the algorithm are presented.
机译:我们提出了一种使用多分辨率贝叶斯方法分割纹理图像的新算法。新算法将多分辨率高斯自回归(MGAR)模型用于所观察图像的金字塔表示,并为类标签金字塔采用了多尺度马尔可夫随机场模型。本文使用的模型结合了观察到的图像金字塔和类别标签金字塔的不同级别之间的相关性。用于分割的标准是最小化多分辨率晶格中错误分类的节点数的期望值。满足该标准的估计被称为“后边缘的多分辨率最大化”(MMPM)估计,并且是单分辨率“后边缘的最大最大化”(MPM)估计的自然扩展。先前的多分辨率分割技术已基于最大后验(MAP)估计标准,该标准已被证明比MPM准则更不适合分割。假设观察到的图像中不同纹理的数量是已知的。 MGAR模型的参数(均值,预测系数和不同纹理的预测误差方差)未知。期望最大化(EM)算法的修改版本用于估计这些参数。假定标签金字塔的吉布斯分布的参数是已知的。实验结果表明了该算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号