首页> 外文期刊>IEEE Transactions on Image Processing >Rate-distortion modeling for multiscale binary shape coding based on Markov random fields
【24h】

Rate-distortion modeling for multiscale binary shape coding based on Markov random fields

机译:基于马尔可夫随机场的多尺度二进制形状编码率失真建模

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this paper it to explore the relationship between the rate-distortion characteristics of multiscale binary shape and Markov random field (MRF) parameters. For coding, it is important that the input parameters that will be used to define this relationship be able to distinguish between the same shape at different scales, as well as different shapes at the same scale. We consider an MRF model, referred to as the Chien model, which accounts for high-order spatial interactions among pixels. We propose to use the statistical moments of the Chien model as input to a neural network to accurately predict the rate and distortion of the binary shape when coded at various scales.
机译:本文旨在探讨多尺度二进制形状的率失真特性与马尔可夫随机场(MRF)参数之间的关系。对于编码,重要的是将用于定义此关系的输入参数能够区分不同比例的相同形状以及相同比例的不同形状。我们考虑一个称为Chien模型的MRF模型,该模型说明了像素之间的高阶空间交互作用。我们建议使用Chien模型的统计矩作为神经网络的输入,以在各种尺度下进行编码时准确预测二进制形状的速率和变形。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号