首页> 外文期刊>IEEE Transactions on Image Processing >Spatially adaptive high-resolution image reconstruction of DCT-based compressed images
【24h】

Spatially adaptive high-resolution image reconstruction of DCT-based compressed images

机译:基于DCT的压缩图像的空间自适应高分辨率图像重建

获取原文
获取原文并翻译 | 示例

摘要

The problem of recovering a high-resolution image from a sequence of low-resolution DCT-based compressed observations is considered in this paper. The introduction of compression complicates the recovery problem. We analyze the DCT quantization noise and propose to model it in the spatial domain as a colored Gaussian process. This allows us to estimate the quantization noise at low bit-rates without explicit knowledge of the original image frame, and we propose a method that simultaneously estimates the quantization noise along with the high-resolution data. We also incorporate a nonstationary image prior model to address blocking and ringing artifacts while still preserving edges. To facilitate the simultaneous estimate, we employ a regularization functional to determine the regularization parameter without any prior knowledge of the reconstruction procedure. The smoothing functional to be minimized is then formulated to have a global minimizer in spite of its nonlinearity by enforcing convergence and convexity requirements. Experiments illustrate the benefit of the proposed method when compared to traditional high-resolution image reconstruction methods. Quantitative and qualitative comparisons are provided.
机译:本文考虑了从一系列基于DCT的低分辨率压缩观测结果中恢复高分辨率图像的问题。压缩的引入使恢复问题变得复杂。我们分析DCT量化噪声,并建议在空间域中将其建模为有色高斯过程。这使我们能够在无需显式了解原始图像帧的情况下估计低比特率下的量化噪声,并且我们提出了一种同时估计量化噪声和高分辨率数据的方法。我们还合并了非平稳图像先验模型,以解决阻塞和振铃伪影,同时仍保留边缘。为了便于同时进行估计,我们采用了正则化功能来确定正则化参数,而无需任何先验知识的重建过程。然后通过强制收敛和凸度要求,将要最小化的平滑函数公式化为具有全局最小化器,尽管它是非线性的。实验表明,与传统的高分辨率图像重建方法相比,该方法的优势。提供了定量和定性的比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号