首页> 外文期刊>IEEE Transactions on Image Processing >Image denoising based on wavelets and multifractals for singularity detection
【24h】

Image denoising based on wavelets and multifractals for singularity detection

机译:基于小波和多重分形的图像去噪

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a very efficient algorithm for image denoising based on wavelets and multifractals for singularity detection. A challenge of image denoising is how to preserve the edges of an image when reducing noise. By modeling the intensity surface of a noisy image as statistically self-similar multifractal processes and taking advantage of the multiresolution analysis with wavelet transform to exploit the local statistical self-similarity at different scales, the pointwise singularity strength value characterizing the local singularity at each scale was calculated. By thresholding the singularity strength, wavelet coefficients at each scale were classified into two categories: the edge-related and regular wavelet coefficients and the irregular coefficients. The irregular coefficients were denoised using an approximate minimum mean-squared error (MMSE) estimation method, while the edge-related and regular wavelet coefficients were smoothed using the fuzzy weighted mean (FWM) filter aiming at preserving the edges and details when reducing noise. Furthermore, to make the FWM-based filtering more efficient for noise reduction at the lowest decomposition level, the MMSE-based filtering was performed as the first pass of denoising followed by performing the FWM-based filtering. Experimental results demonstrated that this algorithm could achieve both good visual quality and high PSNR for the denoised images.
机译:本文提出了一种基于小波和多重分形的非常有效的图像去噪算法,用于奇异性检测。图像去噪的挑战是在减少噪声时如何保留图像的边缘。通过将嘈杂图像的强度表面建模为统计上自相似的多分形过程,并利用小波变换进行多分辨率分析,以利用不同尺度下的局部统计自相似性,逐点奇异强度值表征了每个尺度上的局部奇异点被计算了。通过限制奇异强度,将每个尺度上的小波系数分为两类:边缘相关和规则小波系数以及不规则系数。使用近似最小均方误差(MMSE)估计方法对不规则系数进行去噪,同时使用模糊加权均值(FWM)滤波器对边缘相关和规则小波系数进行平滑处理,目的是在减少噪声时保留边缘和细节。此外,为了使基于FWM的滤波在最低分解级别上更有效地降低噪声,将基于MMSE的滤波作为去噪的第一遍,然后执行基于FWM的滤波。实验结果表明,该算法可同时获得较好的视觉质量和较高的PSNR。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号