首页> 外文期刊>IEEE Transactions on Image Processing >Design-based texture feature fusion using Gabor filters and co-occurrence probabilities
【24h】

Design-based texture feature fusion using Gabor filters and co-occurrence probabilities

机译:使用Gabor滤波器和共现概率的基于设计的纹理特征融合

获取原文
获取原文并翻译 | 示例

摘要

A design-based method to fuse Gabor filter and grey level co-occurrence probability (GLCP) features for improved texture recognition is presented. The fused feature set utilizes both the Gabor filter's capability of accurately capturing lower and mid-frequency texture information and the GLCP's capability in texture information relevant to higher frequency components. Evaluation methods include comparing feature space separability and comparing image segmentation classification rates. The fused feature sets are demonstrated to produce higher feature space separations, as well as higher segmentation accuracies relative to the individual feature sets. Fused feature sets also outperform individual feature sets for noisy images, across different noise magnitudes. The curse of dimensionality is demonstrated not to affect segmentation using the proposed the 48-dimensional fused feature set. Gabor magnitude responses produce higher segmentation accuracies than linearly normalized Gabor magnitude responses. Feature reduction using principal component analysis is acceptable for maintaining the segmentation performance, but feature reduction using the feature contrast method dramatically reduced the segmentation accuracy. Overall, the designed fused feature set is advocated as a means for improving texture segmentation performance.
机译:提出了一种基于设计的融合Gabor滤波器和灰度共生概率(GLCP)特征以改善纹理识别的方法。融合功能集既利用Gabor滤波器准确捕获低频和中频纹理信息的能力,又利用GLCP在与高频分量有关的纹理信息中的能力。评估方法包括比较特征空间可分离性和比较图像分割分类率。融合特征集被证明可以产生更高的特征空间分隔,以及相对于单个特征集的更高的分割精度。融合的特征集在不同的噪声量级上也优于单个特征集的噪点图像。使用提出的48维融合特征集证明了维数的诅咒不会影响分割。与线性归一化的Gabor幅度响应相比,Gabor幅度响应产生的分割精度更高。使用主成分分析进行特征约简对于保持分割性能是可以接受的,但是使用特征对比方法进行特征约简会大大降低分割精度。总体而言,设计的融合特征集被认为是改善纹理分割性能的一种手段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号