首页> 外文期刊>IEEE Transactions on Image Processing >Multiframe selective information fusion from robust error estimation theory
【24h】

Multiframe selective information fusion from robust error estimation theory

机译:基于鲁棒误差估计理论的多帧选择性信息融合

获取原文
获取原文并翻译 | 示例

摘要

A dynamic procedure for selective information fusion from multiple image frames is derived from robust error estimation theory. The fusion rate is driven by the anisotropic gain function, defined to be the difference between the Gaussian smoothed-edge maps of a given input frame and of an evolving synthetic output frame. The gain function achieves both selection and rapid fusion of relatively sharper features from each input frame compared to the synthetic frame. Effective applications are demonstrated for image sharpening in imaging through atmospheric turbulence, for multispectral fusion of the RGB spectral components of a scene, for removal of blurred visual obstructions from in front of a distant focused scene, and for high-resolution two-dimensional display of three-dimensional objects in microscopy.
机译:从鲁棒误差估计理论推导了用于从多个图像帧进行选择性信息融合的动态过程。融合率由各向异性增益函数驱动,各向异性增益函数定义为给定输入帧和进化的合成输出帧的高斯平滑边缘图之间的差。与合成帧相比,增益功能可实现每个输入帧相对更尖锐的特征的选择和快速融合。演示了通过大气湍流成像锐化图像,场景的RGB光谱分量的多光谱融合,从远距离聚焦场景前消除模糊的视觉障碍以及高分辨率二维显示的有效应用。显微镜中的三维物体。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号