首页> 外文期刊>IEEE Transactions on Image Processing >An orthogonal family of quincunx wavelets with continuously adjustable order
【24h】

An orthogonal family of quincunx wavelets with continuously adjustable order

机译:具有连续可调阶的梅花形小波的正交族

获取原文
获取原文并翻译 | 示例

摘要

We present a new family of two-dimensional and three-dimensional orthogonal wavelets which uses quincunx sampling. The orthogonal refinement filters have a simple analytical expression in the Fourier domain as a function of the order /spl lambda/, which may be noninteger. We can also prove that they yield wavelet bases of L/sub 2/(R/sup 2/) for any /spl lambda/>0. The wavelets are fractional in the sense that the approximation error at a given scale a decays like O(a/sup /spl lambda//); they also essentially behave like fractional derivative operators. To make our construction practical, we propose a fast Fourier transform-based implementation that turns out to be surprisingly fast. In fact, our method is almost as efficient as the standard Mallat algorithm for separable wavelets.
机译:我们提出了使用梅花形采样的二维和三维正交小波新家族。正交细化滤波器在傅立叶域中具有简单的解析表达式,该表达式是/ spl lambda /阶次的函数,该阶数可以是非整数。我们还可以证明,对于任何/ spl lambda /> 0,它们产生L / sub 2 /(R / sup 2 /)的小波基。小波在某种意义上是分数的,即在给定标度a下的逼近误差像O(a / sup / spl lambda //)一样衰减;它们的行为本质上也类似于分数导数运算符。为了使我们的构造切实可行,我们提出了一种基于傅立叶变换的快速实现,该实现出奇地快。实际上,我们的方法几乎与可分离小波的标准Mallat算法一样有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号