首页> 外文期刊>IEEE Transactions on Image Processing >Predictive fine granularity successive elimination for fast optimal block-matching motion estimation
【24h】

Predictive fine granularity successive elimination for fast optimal block-matching motion estimation

机译:预测精细粒度连续消除,用于快速优化块匹配运动估计

获取原文
获取原文并翻译 | 示例

摘要

Given the number of checking points, the speed of block motion estimation depends on how fast the block matching is. A new framework, fine granularity successive elimination (FGSE), is proposed for fast optimal block matching in motion estimation. The FGSE features providing a sequence of nondecreasing fine-grained boundary levels to reject a checking point using as little computation as possible, where block complexity is utilized to determine the order of partitioning larger subblocks into smaller subblocks in the creation of the fine-grained boundary levels. It is shown that the well-known successive elimination algorithm (SEA) and multilevel successive elimination algorithm (MSEA) are just two special cases in the FGSE framework. Moreover, in view that two adjacent checking points (blocks) share most of the block pixels with just one pixel shifting horizontally or vertically, we develop a scheme to predict the rejection level for a candidate by exploiting the correlation of matching errors between two adjacent checking points. The resulting predictive FGSE algorithm can further reduce computation load by skipping some redundant boundary levels. Experimental results are presented to verify substantial computational savings of the proposed algorithm in comparison with the SEA/MSEA.
机译:给定检查点的数量,块运动估计的速度取决于块匹配的速度。针对运动估计中的快速最优块匹配,提出了一种新的框架,即细粒度连续消除(FGSE)。 FGSE功能提供了一系列不减小的细粒度边界级别,以使用尽可能少的计算来拒绝检查点,其中,利用块复杂度来确定在创建细粒度边界时将较大的子块划分为较小的子块的顺序水平。结果表明,众所周知的连续消除算法(SEA)和多级连续消除算法(MSEA)只是FGSE框架中的两种特殊情况。此外,鉴于两个相邻的检查点(块)共享大部分块像素,而一个像素水平或垂直移动,我们开发了一种方案,通过利用两个相邻检查之间的匹配误差的相关性来预测候选人的拒绝水平点。生成的预测FGSE算法可以通过跳过某些冗余边界级别来进一步减少计算负荷。实验结果表明,与SEA / MSEA相比,该算法可节省大量计算资源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号