首页> 外文期刊>IEEE Transactions on Image Processing >Compression of map images by multilayer context tree modeling
【24h】

Compression of map images by multilayer context tree modeling

机译:通过多层上下文树建模压缩地图图像

获取原文
获取原文并翻译 | 示例

摘要

We propose a method for compressing color map images by context tree modeling and arithmetic coding. We consider multicomponent map images with semantic layer separation and images that are divided into binary layers by color separation. The key issue in the compression method is the utilization of interlayer correlations, and to solve the optimal ordering of the layers. The interlayer dependencies are acquired by optimizing the context tree for every pair of image layers. The resulting cost matrix of the interlayer dependencies is considered as a directed spanning tree problem and solved by an algorithm based on the Edmond's algorithm for optimum branching and by the optimal selection and removal of the background color. The proposed method gives results 50% better than JBIG and 25% better than a single-layer context tree modeling.
机译:我们提出了一种通过上下文树建模和算术编码来压缩彩色地图图像的方法。我们考虑具有语义层分离的多分量地图图像和通过颜色分离分为二进制层的图像。压缩方法的关键问题是利用层间相关性,并解决各层的最佳排序问题。通过为每对图像层优化上下文树来获取层间依赖性。所得的层间依赖关系成本矩阵被认为是有向生成树问题,并通过基于Edmond算法的算法(用于最佳分支)以及背景颜色的最佳选择和消除进行了求解。所提出的方法的结果比JBIG好50%,比单层上下文树建模好25%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号