首页> 外文期刊>IEEE Transactions on Image Processing >The fusion of large scale classified side-scan sonar image mosaics
【24h】

The fusion of large scale classified side-scan sonar image mosaics

机译:大规模分类侧扫声纳图像镶嵌融合

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a unified framework for the creation of classified maps of the seafloor from sonar imagery. Significant challenges in photometric correction, classification, navigation and registration, and image fusion are addressed. The techniques described are directly applicable to a range of remote sensing problems. Recent advances in side-scan data correction are incorporated to compensate for the sonar beam pattern and motion of the acquisition platform. The corrected images are segmented using pixel-based textural features and standard classifiers. In parallel, the navigation of the sonar device is processed using Kalman filtering techniques. A simultaneous localization and mapping framework is adopted to improve the navigation accuracy and produce georeferenced mosaics of the segmented side-scan data. These are fused within a Markovian framework and two fusion models are presented. The first uses a voting scheme regularized by an isotropic Markov random field and is applicable when the reliability of each information source is unknown. The Markov model is also used to inpaint regions where no final classification decision can be reached using pixel level fusion. The second model formally introduces the reliability of each information source into a probabilistic model. Evaluation of the two models using both synthetic images and real data from a large scale survey shows significant quantitative and qualitative improvement using the fusion approach.
机译:本文提供了一个统一的框架,可用于从声纳图像创建海底分类地图。解决了光度校正,分类,导航和配准以及图像融合方面的重大挑战。所描述的技术可直接应用于一系列遥感问题。结合了侧面扫描数据校正的最新进展,以补偿声纳波束模式和采集平台的运动。使用基于像素的纹理特征和标准分类器对校正后的图像进行分割。同时,使用卡尔曼滤波技术处理声纳设备的导航。采用同时定位和制图的框架,以提高导航的准确性,并生成分段的侧面扫描数据的地理参考镶嵌图。这些在马尔可夫框架内融合,并提出了两种融合模型。第一种使用由各向同性马尔可夫随机场规范化的投票方案,并且适用于每个信息源的可靠性未知的情况。马尔可夫模型还用于修复无法使用像素级融合达成最终分类决策的区域。第二个模型正式将每个信息源的可靠性引入概率模型。使用合成图像和来自大规模调查的真实数据对这两个模型进行评估,结果表明使用融合方法可以显着提高定量和质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号