首页> 外文期刊>IEEE Transactions on Image Processing >Similarity-based online feature selection in content-based image retrieval
【24h】

Similarity-based online feature selection in content-based image retrieval

机译:基于内容的图像检索中基于相似度的在线特征选择

获取原文
获取原文并翻译 | 示例

摘要

Content-based image retrieval (CBIR) has been more and more important in the last decade, and the gap between high-level semantic concepts and low-level visual features hinders further performance improvement. The problem of online feature selection is critical to really bridge this gap. In this paper, we investigate online feature selection in the relevance feedback learning process to improve the retrieval performance of the region-based image retrieval system. Our contributions are mainly in three areas. 1) A novel feature selection criterion is proposed, which is based on the psychological similarity between the positive and negative training sets. 2) An effective online feature selection algorithm is implemented in a boosting manner to select the most representative features for the current query concept and combine classifiers constructed over the selected features to retrieve images. 3) To apply the proposed feature selection method in region-based image retrieval systems, we propose a novel region-based representation to describe images in a uniform feature space with real-valued fuzzy features. Our system is suitable for online relevance feedback learning in CBIR by meeting the three requirements: learning with small size training set, the intrinsic asymmetry property of training samples, and the fast response requirement. Extensive experiments, including comparisons with many state-of-the-arts, show the effectiveness of our algorithm in improving the retrieval performance and saving the processing time.
机译:在过去的十年中,基于内容的图像检索(CBIR)越来越重要,并且高级语义概念和低级视觉特征之间的差距阻碍了性能的进一步提高。在线功能选择的问题对于真正弥合这一差距至关重要。在本文中,我们研究了相关反馈学习过程中的在线特征选择,以提高基于区域的图像检索系统的检索性能。我们的贡献主要在三个方面。 1)提出了一种新颖的特征选择准则,该准则基于正负训练集之间的心理相似性。 2)有效的在线特征选择算法以增强的方式实现,以为当前查询概念选择最具代表性的特征,并组合在所选特征上构造的分类器以检索图像。 3)为了将提出的特征选择方法应用于基于区域的图像检索系统中,我们提出了一种新颖的基于区域的表示方法来描述具有实值模糊特征的统一特征空间中的图像。我们的系统满足以下三个要求,适合在CBIR中进行在线相关反馈学习:使用小规模训练集进行学习,训练样本的固有不对称性以及快速响应要求。广泛的实验(包括与许多最新技术的比较)证明了我们的算法在提高检索性能和节省处理时间方面的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号