首页> 外文期刊>IEEE Transactions on Image Processing >Rotation-invariant texture retrieval with gaussianized steerable pyramids
【24h】

Rotation-invariant texture retrieval with gaussianized steerable pyramids

机译:高斯可控金字塔的旋转不变纹理检索

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel rotation-invariant image retrieval scheme based on a transformation of the texture information via a steerable pyramid. First, we fit the distribution of the subband coefficients using a joint alpha-stable sub-Gaussian model to capture their non-Gaussian behavior. Then, we apply a normalization process in order to Gaussianize the coefficients. As a result, the feature extraction step consists of estimating the covariances between the normalized pyramid coefficients. The similarity between two distinct texture images is measured by minimizing a rotation-invariant version of the Kullback-Leibler Divergence between their corresponding multivariate Gaussian distributions, where the minimization is performed over a set of rotation angles.
机译:本文提出了一种新的基于旋转金字塔的纹理信息变换的旋转不变图像检索方案。首先,我们使用联合的α稳定次高斯模型拟合子带系数的分布,以捕获其非高斯行为。然后,我们应用归一化过程以对系数进行高斯化。结果,特征提取步骤包括估计归一化金字塔系数之间的协方差。通过最小化它们对应的多元高斯分布之间的Kullback-Leibler发散度的旋转不变形式,来测量两个不同纹理图像之间的相似性,其中在一组旋转角度上执行最小化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号