首页> 外文期刊>IEEE Transactions on Image Processing >Binary Tree-based Generic Demosaicking Algorithm for Multispectral Filter Arrays
【24h】

Binary Tree-based Generic Demosaicking Algorithm for Multispectral Filter Arrays

机译:多谱滤波器阵列的基于二叉树的通用去马赛克算法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we extend the idea of using mosaicked color filter array (CFA) in color imaging, which has been widely adopted in the digital color camera industry, to the use of multispectral filter array (MSFA) in multispectral imaging. The filter array technique can help reduce the cost, achieve exact registration, and improve the robustness of the imaging system. However, the extension from CFA to MSFA is not straightforward. First, most CFAs only deal with a few bands (3 or 4) within the narrow visual spectral region, while the design of MSFA needs to handle the arrangement of multiple bands (more than 3) across a much wider spectral range. Second, most existing CFA demosaicking algorithms assume the fixed Bayer CFA and are confined to properties only existed in the color domain. Therefore, they cannot be directly applied to multispectral demosaicking. The main challenges faced in multispectral demosaicking is how to design a generic algorithm that can handle the more diversified MSFA patterns, and how to improve performance with a coarser spatial resolution and a less degree of spectral correlation. In this paper, we present a binary tree based generic demosaicking method. Two metrics are used to evaluate the generic algorithm, including the root mean-square error (RMSE) for reconstruction performance and the classification accuracy for target discrimination performance. Experimental results show that the demosaicked images present low RMSE (less than 7) and comparable classification performance as original images. These results support that MSFA technique can be applied to multispectral imaging with unique advantages.
机译:在本文中,我们将已在数字彩色相机行业中广泛采用的在彩色成像中使用镶嵌式彩色滤光片阵列(CFA)的概念扩展到在多光谱成像中使用多光谱滤光片阵列(MSFA)的想法。滤波器阵列技术可以帮助降低成本,实现精确配准并提高成像系统的鲁棒性。但是,从CFA扩展到MSFA并不容易。首先,大多数CFA仅处理狭窄的可见光谱区域内的几个频段(3或4),而MSFA的设计需要处理更宽的光谱范围内的多个频段(超过3个)的布置。其次,大多数现有的CFA去马赛克算法都采用固定的Bayer CFA,并且局限于仅在色域中存在的属性。因此,它们不能直接应用于多光谱去马赛克。多光谱去马赛克技术面临的主要挑战是如何设计一种通用算法来处理更多样化的MSFA模式,以及如何以较粗糙的空间分辨率和较小程度的光谱相关性来提高性能。在本文中,我们提出了一种基于二叉树的通用去马赛克方法。使用两个度量来评估通用算法,包括用于重建性能的均方根误差(RMSE)和用于目标识别性能的分类精度。实验结果表明,去马赛克图像具有较低的RMSE(小于7),并且具有与原始图像相当的分类性能。这些结果表明,MSFA技术可以应用于具有独特优势的多光谱成像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号