首页> 外文期刊>IEEE Transactions on Image Processing >Semantic-Based Surveillance Video Retrieval
【24h】

Semantic-Based Surveillance Video Retrieval

机译:基于语义的监控视频检索

获取原文
获取原文并翻译 | 示例

摘要

Visual surveillance produces large amounts of video data. Effective indexing and retrieval from surveillance video databases are very important. Although there are many ways to represent the content of video clips in current video retrieval algorithms, there still exists a semantic gap between users and retrieval systems. Visual surveillance systems supply a platform for investigating semantic-based video retrieval. In this paper, a semantic-based video retrieval framework for visual surveillance is proposed. A cluster-based tracking algorithm is developed to acquire motion trajectories. The trajectories are then clustered hierarchically using the spatial and temporal information, to learn activity models. A hierarchical structure of semantic indexing and retrieval of object activities, where each individual activity automatically inherits all the semantic descriptions of the activity model to which it belongs, is proposed for accessing video clips and individual objects at the semantic level. The proposed retrieval framework supports various queries including queries by keywords, multiple object queries, and queries by sketch. For multiple object queries, succession and simultaneity restrictions, together with depth and breadth first orders, are considered. For sketch-based queries, a method for matching trajectories drawn by users to spatial trajectories is proposed. The effectiveness and efficiency of our framework are tested in a crowded traffic scene
机译:视觉监视会产生大量视频数据。从监视视频数据库进行有效的索引编制和检索非常重要。尽管在当前的视频检索算法中有很多方法可以表示视频剪辑的内容,但是在用户和检索系统之间仍然存在语义鸿沟。视觉监视系统为调查基于语义的视频检索提供了一个平台。本文提出了一种基于语义的视频监控视频检索框架。开发了基于簇的跟踪算法来获取运动轨迹。然后使用空间和时间信息对轨迹进行分层聚类,以学习活动模型。提出了一种语义索引和对象活动检索的层次结构,其中每个单独的活动自动继承了它所属的活动模型的所有语义描述,用于在语义级别访问视频剪辑和单个对象。提出的检索框架支持各种查询,包括按关键字查询,多个对象查询和按草图查询。对于多对象查询,将考虑继承和同时性限制以及深度和广度优先顺序。对于基于草图的查询,提出了一种将用户绘制的轨迹与空间轨迹进行匹配的方法。在拥挤的交通场景中测试了我们框架的有效性和效率

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号