首页> 外文期刊>IEEE Transactions on Image Processing >A New SURE Approach to Image Denoising: Interscale Orthonormal Wavelet Thresholding
【24h】

A New SURE Approach to Image Denoising: Interscale Orthonormal Wavelet Thresholding

机译:一种新的SURE图像去噪方法:尺度间正交小波阈值化

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces a new approach to orthonormal wavelet image denoising. Instead of postulating a statistical model for the wavelet coefficients, we directly parametrize the denoising process as a sum of elementary nonlinear processes with unknown weights. We then minimize an estimate of the mean square error between the clean image and the denoised one. The key point is that we have at our disposal a very accurate, statistically unbiased, MSE estimate-Stein's unbiased risk estimate-that depends on the noisy image alone, not on the clean one. Like the MSE, this estimate is quadratic in the unknown weights, and its minimization amounts to solving a linear system of equations. The existence of this a priori estimate makes it unnecessary to devise a specific statistical model for the wavelet coefficients. Instead, and contrary to the custom in the literature, these coefficients are not considered random any more. We describe an interscale orthonormal wavelet thresholding algorithm based on this new approach and show its near-optimal performance-both regarding quality and CPU requirement-by comparing it with the results of three state-of-the-art nonredundant denoising algorithms on a large set of test images. An interesting fallout of this study is the development of a new, group-delay-based, parent-child prediction in a wavelet dyadic tree
机译:本文介绍了一种新的正交小波图像去噪方法。代替为小波系数建立统计模型,我们直接将去噪过程参数化为具有未知权重的基本非线性过程的总和。然后,我们将干净图像与去噪图像之间的均方误差估计值最小化。关键点在于,我们可以使用一种非常准确的,统计上无偏的MSE估计值-斯坦的无偏风险估计值-仅取决于嘈杂的图像,而不取决于干净的图像。像MSE一样,此估计在未知权重上是二次方,其最小化等于求解线性方程组。该先验估计的存在使得没有必要为小波系数设计特定的统计模型。相反,与文献中的惯例相反,这些系数不再被认为是随机的。通过与大型集上三种最新的非冗余去噪算法的结果进行比较,我们描述了一种基于这种新方法的尺度间正交小波阈值算法,并在质量和CPU需求两方面展示了其接近最佳的性能测试图像。这项研究的一个有趣的成果是,在小波二叉树中开发了一种新的基于组延迟的亲子预测方法

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号