首页> 外文期刊>IEEE Transactions on Image Processing >Video Inpainting Under Constrained Camera Motion
【24h】

Video Inpainting Under Constrained Camera Motion

机译:受约束的摄像机运动下的视频修复

获取原文
获取原文并翻译 | 示例

摘要

A framework for inpainting missing parts of a video sequence recorded with a moving or stationary camera is presented in this work. The region to be inpainted is general: It may be still or moving, in the background or in the foreground, it may occlude one object and be occluded by some other object. The algorithm consists of a simple preprocessing stage and two steps of video inpainting. In the preprocessing stage, we roughly segment each frame into foreground and background. We use this segmentation to build three image mosaics that help to produce time consistent results and also improve the performance of the algorithm by reducing the search space. In the first video inpainting step, we reconstruct moving objects in the foreground that are "occluded" by the region to be inpainted. To this end, we fill the gap as much as possible by copying information from the moving foreground in other frames, using a priority-based scheme. In the second step, we inpaint the remaining hole with the background. To accomplish this, we first align the frames and directly copy when possible. The remaining pixels are filled in by extending spatial texture synthesis techniques to the spatiotemporal domain. The proposed framework has several advantages over state-of-the-art algorithms that deal with similar types of data and constraints. It permits some camera motion, is simple to implement, fast, does not require statistical models of background nor foreground, works well in the presence of rich and cluttered backgrounds, and the results show that there is no visible blurring or motion artifacts. A number of real examples taken with a consumer hand-held camera are shown supporting these findings
机译:在这项工作中,提出了一个修补用移动或固定摄像机录制的视频序列的缺失部分的框架。要修复的区域是一般区域:它可以在静止或移动中,在背景或前景中,可能会遮挡一个对象,而可能被其他某个物体遮挡。该算法包括一个简单的预处理阶段和两个视频修复步骤。在预处理阶段,我们将每个帧大致分为前景和背景。我们使用这种分割方法来构建三个图像镶嵌图,这有助于产生时间一致的结果,并通过减少搜索空间来提高算法的性能。在第一个视频修复步骤中,我们重建前景中被要修复区域“遮挡”的运动对象。为此,我们使用基于优先级的方案,通过从其他帧中复制来自移动前景的信息来尽可能地填补空白。在第二步中,我们用背景将剩下的孔修复。为此,我们首先对齐框架并在可能的情况下直接复制。通过将空间纹理合成技术扩展到时空域来填充其余像素。与处理类似类型数据和约束的最新算法相比,所提出的框架具有多个优势。它允许某些摄像机运动,易于实施,快速,不需要背景或前景的统计模型,并且在背景丰富且杂乱的情况下效果很好,结果表明没有可见的模糊或运动伪影。展示了使用家用手持摄像机拍摄的许多真实示例,这些证据支持了这些发现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号