首页> 外文期刊>IEEE Transactions on Image Processing >Reduced-Complexity Delayed-Decision Algorithm for Context-Based Image Processing Systems
【24h】

Reduced-Complexity Delayed-Decision Algorithm for Context-Based Image Processing Systems

机译:基于上下文的图像处理系统的降低复杂度的延迟决策算法

获取原文
获取原文并翻译 | 示例

摘要

It is well known that the performance of context-based image processing systems can be improved by allowing the processor (e.g., an encoder or a denoiser) a delay of several samples before making a processing decision. Often, however, for such systems, traditional delayed-decision algorithms can become computationally prohibitive due to the growth in the size of the space of possible solutions. In this paper, we propose a reduced-complexity, one-pass, delayed-decision algorithm that systematically reduces the size of the search space, while also preserving its structure. In particular, we apply the proposed algorithm to two examples of adaptive context-based image processing systems, an image coding system that employs a context-based entropy coder, and a spatially adaptive image-denoising system. For these two types of widely used systems, we show that the proposed delayed-decision search algorithm outperforms instantaneous-decision algorithms with only a small increase in complexity. We also show that the performance of the proposed algorithm is better than that of other, higher complexity, delayed-decision algorithms.
机译:众所周知,可以通过在做出处理决定之前允许处理器(例如,编码器或去噪器)几个样本的延迟来改善基于上下文的图像处理系统的性能。但是,通常对于此类系统,由于可能的解决方案的空间大小增加,传统的延迟决策算法可能会在计算上变得过时。在本文中,我们提出了一种降低复杂度的单程延迟决策算法,该算法可系统地减小搜索空间的大小,同时还能保留其结构。特别地,我们将所提出的算法应用于基于上下文的自适应图像处理系统的两个示例,采用基于上下文的熵编码器的图像编码系统和空间自适应的图像降噪系统。对于这两种类型的广泛使用的系统,我们证明了所提出的延迟决策搜索算法的性能优于瞬时决策算法,并且复杂度仅增加了一点点。我们还表明,所提算法的性能优于其他更高复杂度的延迟决策算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号