首页> 外文期刊>IEEE Transactions on Image Processing >Global Regularizing Flows With Topology Preservation for Active Contours and Polygons
【24h】

Global Regularizing Flows With Topology Preservation for Active Contours and Polygons

机译:使用活动轮廓和多边形的拓扑保留对流进行全局正则化

获取原文
获取原文并翻译 | 示例

摘要

Active contour and active polygon models have been used widely for image segmentation. In some applications, the topology of the object(s) to be detected from an image is known a priori, despite a complex unknown geometry, and it is important that the active contour or polygon maintain the desired topology. In this work, we construct a novel geometric flow that can be added to image-based evolutions of active contours and polygons in order to preserve the topology of the initial contour or polygon. We emphasize that, unlike other methods for topology preservation, the proposed geometric flow continually adjusts the geometry of the original evolution in a gradual and graceful manner so as to prevent a topology change long before the curve or polygon becomes close to topology change. The flow also serves as a global regularity term for the evolving contour, and has smoothness properties similar to curvature flow. These properties of gradually adjusting the original flow and global regularization prevent geometrical inaccuracies common with simple discrete topology preservation schemes. The proposed topology preserving geometric flow is the gradient flow arising from an energy that is based on electrostatic principles. The evolution of a single point on the contour depends on all other points of the contour, which is different from traditional curve evolutions in the computer vision literature
机译:活动轮廓和活动多边形模型已广泛用于图像分割。在一些应用中,尽管复杂的未知几何形状,先验地已知要从图像中检测出的对象的拓扑,并且重要的是有效轮廓或多边形保持期望的拓扑。在这项工作中,我们构造了一种新颖的几何流,可以将其添加到活动轮廓和多边形的基于图像的演变中,以保留初始轮廓或多边形的拓扑。我们强调,与其他用于拓扑保存的方法不同,提出的几何流以渐进和优美的方式连续调整原始演化的几何形状,以防止在曲线或多边形接近拓扑变化之前很长时间就发生拓扑变化。流动还用作不断变化的轮廓的全局规则项,并具有类似于曲率流动的平滑性。逐渐调整原始流量和全局正则化的这些特性可防止简单的离散拓扑保留方案常见的几何误差。所提出的保持几何流动的拓扑是基于静电原理的能量产生的梯度流动。轮廓上单个点的演变取决于轮廓上的所有其他点,这与计算机视觉文献中的传统曲线演变不同

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号