首页> 外文期刊>IEEE Transactions on Image Processing >Histogram of Gabor Phase Patterns (HGPP): A Novel Object Representation Approach for Face Recognition
【24h】

Histogram of Gabor Phase Patterns (HGPP): A Novel Object Representation Approach for Face Recognition

机译:Gabor相位模式直方图(HGPP):人脸识别的新型对象表示方法

获取原文
获取原文并翻译 | 示例

摘要

A novel object descriptor, histogram of Gabor phase pattern (HGPP), is proposed for robust face recognition. In HGPP, the quadrant-bit codes are first extracted from faces based on the Gabor transformation. Global Gabor phase pattern (GGPP) and local Gabor phase pattern (LGPP) are then proposed to encode the phase variations. GGPP captures the variations derived from the orientation changing of Gabor wavelet at a given scale (frequency), while LGPP encodes the local neighborhood variations by using a novel local XOR pattern (LXP) operator. They are both divided into the nonoverlapping rectangular regions, from which spatial histograms are extracted and concatenated into an extended histogram feature to represent the original image. Finally, the recognition is performed by using the nearest-neighbor classifier with histogram intersection as the similarity measurement. The features of HGPP lie in two aspects: 1) HGPP can describe the general face images robustly without the training procedure; 2) HGPP encodes the Gabor phase information, while most previous face recognition methods exploit the Gabor magnitude information. In addition, Fisher separation criterion is further used to improve the performance of HGPP by weighing the subregions of the image according to their discriminative powers. The proposed methods are successfully applied to face recognition, and the experiment results on the large-scale FERET and CAS-PEAL databases show that the proposed algorithms significantly outperform other well-known systems in terms of recognition rate
机译:提出了一种新颖的目标描述符,Gabor相位模式直方图(HGPP),用于鲁棒的人脸识别。在HGPP中,首先根据Gabor变换从面部提取象限位代码。然后,提出了全局Gabor相位模式(GGPP)和局部Gabor相位模式(LGPP)来对相位变化进行编码。 GGPP捕获在给定尺度(频率)下从Gabor小波的方向变化得出的变化,而LGPP通过使用新颖的本地XOR模式(LXP)算子对本地邻域变化进行编码。它们都被划分为不重叠的矩形区域,从中提取空间直方图并将其连接成扩展的直方图特征,以表示原始图像。最后,通过使用直方图相交的最近邻分类器作为相似性度量来执行识别。 HGPP的特征在于两个方面:1)HGPP无需训练程序就可以鲁棒地描述一​​般的人脸图像。 2)HGPP编码Gabor相位信息,而大多数先前的面部识别方法都利用Gabor幅度信息。另外,费舍尔分离准则还用于通过根据图像的区分能力加权图像的子区域来提高HGPP的性能。所提出的方法已成功地应用于人脸识别,并且在大型FERET和CAS-PEAL数据库上的实验结果表明,所提出的算法在识别率方面明显优于其他知名系统

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号