首页> 外文期刊>IEEE Transactions on Image Processing >Kernel Regression for Image Processing and Reconstruction
【24h】

Kernel Regression for Image Processing and Reconstruction

机译:用于图像处理和重构的内核回归

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we make contact with the field of nonparametric statistics and present a development and generalization of tools and results for use in image processing and reconstruction. In particular, we adapt and expand kernel regression ideas for use in image denoising, upscaling, interpolation, fusion, and more. Furthermore, we establish key relationships with some popular existing methods and show how several of these algorithms, including the recently popularized bilateral filter, are special cases of the proposed framework. The resulting algorithms and analyses are amply illustrated with practical examples
机译:在本文中,我们与非参数统计领域进行了接触,并提出了在图像处理和重建中使用的工具和结果的开发和推广。特别是,我们调整并扩展了内核回归的思想,以用于图像去噪,放大,插值,融合等。此外,我们与一些流行的现有方法建立了关键关系,并说明了这些算法中的几种(包括最近流行的双边滤波器)是所提出框架的特殊情况。所得的算法和分析将通过实际示例进行充分说明

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号