【24h】

Shape-Based Averaging

机译:基于形状的平均

获取原文
获取原文并翻译 | 示例

摘要

A new method for averaging multidimensional images is presented, which is based on signed Euclidean distance maps computed for each of the pixel values. We refer to the algorithm as "shape-based averaging" (SBA) because of its similarity to Raya and Udupa's shape-based interpolation method. The new method does not introduce pixel intensities that were not present in the input data, which makes it suitable for averaging nonnumerical data such as label maps (segmentations). Using segmented human brain magnetic resonance images, SBA is compared to label voting for the purpose of averaging image segmentations in a multiclassifier fashion. SBA, on average, performed as well as label voting in terms of recognition rates of the averaged segmentations. SBA produced more regular and contiguous structures with less fragmentation than did label voting. SBA also was more robust for small numbers of atlases and for low atlas resolutions, in particular, when combined with shape-based interpolation. We conclude that SBA improves the contiguity and accuracy of averaged image segmentations
机译:提出了一种平均多维图像的新方法,该方法基于为每个像素值计算的有符号欧氏距离图。由于该算法与Raya和Udupa的基于形状的插值方法相似,因此将其称为“基于形状的平均”(SBA)。新方法不会引入输入数据中不存在的像素强度,这使其适用于平均非数字数据,例如标签图(分段)。使用分段的人脑磁共振图像,将SBA与标签表决进行比较,目的是以多分类器方式平均图像分段。 SBA平均而言,在平均细分的识别率方面也表现出出色的标签投票率。与标签表决相比,SBA产生的规则结构和连续结构更为分散,碎片更少。对于少量地图集和低地图集分辨率,SBA也更加强大,特别是与基于形状的插值结合使用时。我们得出的结论是,SBA可以提高平均图像分割的连续性和准确性

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号