首页> 外文期刊>IEEE Transactions on Image Processing >Texture- and Multiple-Template-Based Algorithm for Lossless Compression of Error-Diffused Images
【24h】

Texture- and Multiple-Template-Based Algorithm for Lossless Compression of Error-Diffused Images

机译:基于纹理和多模板的错误扩散图像无损压缩算法

获取原文
获取原文并翻译 | 示例

摘要

Recently, several efficient context-based arithmetic coding algorithms have been developed successfully for lossless compression of error-diffused images. In this paper, we first present a novel block- and texture-based approach to train the multiple-template according to the most representative texture features. Based on the trained multiple template, we next present an efficient texture- and multiple-template-based (TM-based) algorithm for lossless compression of error-diffused images. In our proposed TM-based algorithm, the input image is divided into many blocks and for each block, the best template is adaptively selected from the multiple-template based on the texture feature of that block. Under 20 testing error-diffused images and the personal computer with Intel Celeron 2.8-GHz CPU, experimental results demonstrate that with a little encoding time degradation, 0.365 s (0.901 s) on average, the compression improvement ratio of our proposed TM-based algorithm over the joint bilevel image group (JBIG) standard [over the previous block arithmetic coding for image compression (BACIC) algorithm proposed by Reavy and Boncelet is 24%] (19.4%). Under the same condition, the compression improvement ratio of our proposed algorithm over the previous algorithm by Lee and Park is 17.6% and still only has a little encoding time degradation (0.775 s on average). In addition, the encoding time required in the previous free tree-based algorithm is 109.131 s on average while our proposed algorithm takes 0.995 s; the average compression ratio of our proposed TM-based algorithm, 1.60, is quite competitive to that of the free tree-based algorithm, 1.62.
机译:近来,已经成功地开发了几种有效的基于上下文的算术编码算法,用于对误差扩散图像进行无损压缩。在本文中,我们首先提出一种新颖的基于块和纹理的方法,以根据最具代表性的纹理特征来训练多模板。基于受过训练的多个模板,我们接下来提出一种有效的基于纹理和基于多个模板(基于TM)的算法,用于对误差扩散图像进行无损压缩。在我们提出的基于TM的算法中,将输入图像分为许多块,并且对于每个块,根据该块的纹理特征从多模板中自适应选择最佳模板。在20幅测试误差扩散的图像和采用Intel Celeron 2.8 GHz CPU的个人计算机上,实验结果表明,在编码时间上有少许降低,平均为0.365 s(0.901 s),我们提出的基于TM的算法的压缩改善率比联合双层图像组(JBIG)标准高出[比Reavy和Boncelet提出的先前的图像压缩块算术编码(BACIC)算法高出24%](19.4%)。在相同条件下,我们提出的算法相对于Lee和Park的先前算法的压缩改进率是17.6%,并且编码时间退化仍然很小(平均0.775 s)。此外,以前的基于自由树的算法平均需要109.131 s的编码时间,而我们提出的算法则需要0.995 s的编码时间;我们提出的基于TM的算法的平均压缩率为1.60,与基于自由树的算法的1.62相比,具有相当的竞争力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号