首页> 外文期刊>IEEE Transactions on Image Processing >A Segmentation Model Using Compound Markov Random Fields Based on a Boundary Model
【24h】

A Segmentation Model Using Compound Markov Random Fields Based on a Boundary Model

机译:基于边界模型的复合马尔可夫随机场分割模型

获取原文
获取原文并翻译 | 示例

摘要

Markov random field (MRF) theory has been widely applied to the challenging problem of image segmentation. In this paper, we propose a new nontexture segmentation model using compound MRFs, in which the original label MRF is coupled with a new boundary MRF to help improve the segmentation performance. The boundary model is relatively general and does not need prior training on boundary patterns. Unlike some existing related work, the proposed method offers a more compact interaction between label and boundary MRFs. Furthermore, our boundary model systematically takes into account all the possible scenarios of a single edge existing in a 3times3 neighborhood and, thus, incorporates sophisticated prior information about the relation between label and boundary. It is experimentally shown that the proposed model can segment objects with complex boundaries and at the same time is able to work under noise corruption. The new method has been applied to medical image segmentation. Experiments on synthetic images and real clinical datasets show that the proposed model is able to produce more accurate segmentation results and satisfactorily keep the delicate boundary. It is also less sensitive to noise in both high and low signal-to-noise ratio regions than some of the existing models in common use
机译:马尔可夫随机场(MRF)理论已被广泛应用于具有挑战性的图像分割问题。在本文中,我们提出了一种使用复合MRF的新的非纹理分割模型,其中原始标签MRF与新的边界MRF结合以帮助提高分割性能。边界模型是相对通用的,不需要事先对边界模式进行训练。与一些现有的相关工作不同,所提出的方法在标签和边界MRF之间提供了更紧凑的交互。此外,我们的边界模型系统地考虑了存在于3×3邻域中的单个边缘的所有可能情况,因此,结合了有关标签和边界之间关系的复杂先验信息。实验表明,所提出的模型可以分割具有复杂边界的对象,同时能够在噪声破坏下工作。该新方法已应用于医学图像分割。在合成图像和真实临床数据集上进行的实验表明,该模型能够产生更准确的分割结果,并令人满意地保持微妙的边界。与某些常用的现有模型相比,它对高信噪比和低信噪比区域的噪声也较不敏感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号