首页> 外文期刊>IEEE Transactions on Image Processing >Text Extraction and Document Image Segmentation Using Matched Wavelets and MRF Model
【24h】

Text Extraction and Document Image Segmentation Using Matched Wavelets and MRF Model

机译:使用匹配小波和MRF模型的文本提取和文档图像分割

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we have proposed a novel scheme for the extraction of textual areas of an image using globally matched wavelet filters. A clustering-based technique has been devised for estim ating globally matched wavelet filters using a collection of groundtruth images. We have extended our text extraction scheme for the segmentation of document images into text, background, and picture components (which include graphics and continuous tone images). Multiple, two-class Fisher classifiers have been used for this purpose. We also exploit contextual information by using a Markov random field formulation-based pixel labeling scheme for refinement of the segmentation results. Experimental results have established effectiveness of our approach.
机译:在本文中,我们提出了一种使用全局匹配的小波滤波器提取图像文本区域的新方案。已经设计了一种基于聚类的技术,用于使用地面实况图像的集合来估计全局匹配的小波滤波器。我们扩展了文本提取方案,可将文档图像分割为文本,背景和图片成分(包括图形和连续色调图像)。为此,使用了多个两类Fisher分类器。我们还通过使用基于马尔可夫随机场公式的像素标记方案来开发上下文信息,以细化细分结果。实验结果确定了我们方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号