首页> 外文期刊>IEEE Transactions on Image Processing >Classification-Driven Watershed Segmentation
【24h】

Classification-Driven Watershed Segmentation

机译:分类驱动的分水岭分割

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel approach for creation of topographical function and object markers used within watershed segmentation. Typically, marker-driven watershed segmentation extracts seeds indicating the presence of objects or background at specific image locations. The marker locations are then set to be regional minima within the topological surface (typically, the gradient of the original input image), and the watershed algorithm is applied. In contrast, our approach uses two classifiers, one trained to produce markers, the other trained to produce object boundaries. As a result of using machine-learned pixel classification, the proposed algorithm is directly applicable to both single channel and multichannel image data. Additionally, rather than flooding the gradient image, we use the inverted probability map produced by the second aforementioned classifier as input to the watershed algorithm. Experimental results demonstrate the superior performance of the classification-driven watershed segmentation algorithm for the tasks of 1) image-based granulometry and 2) remote sensing.
机译:本文提出了一种新的方法来创建流域分割中使用的地形功能和对象标记。通常,标记驱动的分水岭分割会提取种子,以指示特定图像位置处对象或背景的存在。然后将标记位置设置为拓扑表面内的区域最小值(通常是原始输入图像的梯度),然后应用分水岭算法。相反,我们的方法使用两个分类器,一个分类器经过训练可以生成标记,另一个分类器可以生成对象边界。由于使用了机器学习的像素分类,因此该算法可直接应用于单通道和多通道图像数据。另外,我们使用第二个上述分类器生成的倒置概率图作为分水岭算法的输入,而不是对梯度图像进行泛洪。实验结果证明了分类驱动分水岭分割算法在以下方面的优越性能:1)基于图像的粒度测量和2)遥感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号