首页> 外文期刊>IEEE Transactions on Image Processing >Detection and Segmentation of Concealed Objects in Terahertz Images
【24h】

Detection and Segmentation of Concealed Objects in Terahertz Images

机译:太赫兹图像中隐藏物体的检测与分割

获取原文
获取原文并翻译 | 示例

摘要

Terahertz imaging makes it possible to acquire images of objects concealed underneath clothing by measuring the radiometric temperatures of different objects on a human subject. The goal of this work is to automatically detect and segment concealed objects in broadband 0.1-1 THz images. Due to the inherent physical properties of passive terahertz imaging and associated hardware, images have poor contrast and low signal to noise ratio. Standard segmentation algorithms are unable to segment or detect concealed objects. Our approach relies on two stages. First, we remove the noise from the image using the anisotropic diffusion algorithm. We then detect the boundaries of the concealed objects. We use a mixture of Gaussian densities to model the distribution of the temperature inside the image. We then evolve curves along the isocontours of the image to identify the concealed objects. We have compared our approach with two state-of-the-art segmentation methods. Both methods fail to identify the concealed objects, while our method accurately detected the objects. In addition, our approach was more accurate than a state-of-the-art supervised image segmentation algorithm that required that the concealed objects be already identified. Our approach is completely unsupervised and could work in real-time on dedicated hardware.
机译:太赫兹成像可以通过测量人类对象上不同物体的辐射温度来获取隐藏在衣服下的物体的图像。这项工作的目标是自动检测和分割0.1-1 THz宽带图像中的隐藏对象。由于无源太赫兹成像和相关硬件的固有物理特性,图像的对比度差且信噪比低。标准分割算法无法分割或检测隐藏的对象。我们的方法依赖于两个阶段。首先,我们使用各向异性扩散算法从图像中去除噪声。然后,我们检测隐藏对象的边界。我们使用混合的高斯密度来模拟图像内部温度的分布。然后,我们沿着图像的轮廓绘制曲线,以识别隐藏的对象。我们已将我们的方法与两种最新的分割方法进行了比较。两种方法都无法识别隐藏的对象,而我们的方法可以准确地检测到对象。此外,我们的方法比要求已识别隐藏对象的最新监督图像分割算法更准确。我们的方法完全不受监督,可以在专用硬件上实时工作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号