首页> 外文期刊>IEEE Transactions on Image Processing >Phase Local Approximation (PhaseLa) Technique for Phase Unwrap From Noisy Data
【24h】

Phase Local Approximation (PhaseLa) Technique for Phase Unwrap From Noisy Data

机译:从噪声数据中解包相位的相位局部近似(PhaseLa)技术

获取原文
获取原文并翻译 | 示例

摘要

The local polynomial approximation $({hbox {LPA}})$ is a nonparametric regression technique with pointwise estimation in a sliding window. We apply the ${hbox {LPA}}$ of the argument of $cos $ and $sin $ in order to estimate the absolute phase from noisy wrapped phase data. Using the intersection of confidence interval $({hbox {ICI}})$ algorithm, the window size is selected as adaptive pointwise varying. This adaptation gives the phase estimate with the accuracy close to optimal in the mean squared sense. For calculations, we use a Gauss–Newton recursive procedure initiated by the phase estimates obtained for the neighboring points. It enables tracking properties of the algorithm and its ability to go beyond the principal interval $[-pi,pi)$ and to reconstruct the absolute phase from wrapped phase observations even when the magnitude of the phase difference takes quite large values. The algorithm demonstrates a very good accuracy of the phase reconstruction which on many occasion overcomes the accuracy of the state-of-the-art algorithms developed for noisy phase unwrap. The theoretical analysis produced for the accuracy of the pointwise estimates is used for justification of the ${hbox {ICI}}$ adaptation algorithm.
机译:局部多项式逼近$({hbox {LPA}})$是一种非参数回归技术,在滑动窗口中采用逐点估算。我们应用$ cos $和$ sin $的参数的$ {hbox {LPA}} $以便从嘈杂的包裹相位数据中估计绝对相位。使用置信区间$({hbox {ICI}})$算法的交集,将窗口大小选择为自适应逐点变化。在均方意义上,这种适应使相位估计的精度接近最佳。为了进行计算,我们使用了高斯-牛顿递归过程,该过程由对相邻点获得的相位估计启动。它使跟踪算法的属性及其超出主间隔$ [-pi,pi)$的能力成为可能,并且即使相位差的大小取非常大的值,也可以根据包裹相位观测值重建绝对相位。该算法证明了相位重建的非常好的准确性,在许多情况下,这些准确性克服了为嘈杂的相位解缠开发的最新算法的准确性。为逐点估计的准确性而产生的理论分析用于证明$ {hbox {ICI}} $自适应算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号