首页> 外文期刊>IEEE Transactions on Image Processing >Universal Image Compression Using Multiscale Recurrent Patterns With Adaptive Probability Model
【24h】

Universal Image Compression Using Multiscale Recurrent Patterns With Adaptive Probability Model

机译:使用多尺度递归模式和自适应概率模型的通用图像压缩

获取原文
获取原文并翻译 | 示例

摘要

In this work, we further develop the multidimensional multiscale parser (MMP) algorithm, a recently proposed universal lossy compression method which has been successfully applied to images as well as other types of data, as video and ECG signals. The MMP is based on approximate multiscale pattern matching, encoding blocks of an input signal using expanded and contracted versions of patterns stored in a dictionary. The dictionary is updated using expanded and contracted versions of concatenations of previously encoded blocks. This implies that MMP builds its own dictionary while the input data is being encoded, using segments of the input itself, which lends it a universal flavor. It presents a flexible structure, which allows for easily adding data-specific extensions to the base algorithm. Often, the signals to be encoded belong to a narrow class, as the one of smooth images. In these cases, one expects that some improvement can be achieved by introducing some knowledge about the source to be encoded. In this paper, we use the assumption about the smoothness of the source in order to create good context models for the probability of blocks in the dictionary. Such probability models are estimated by considering smoothness constraints around causal block boundaries. In addition, we refine the obtained probability models by also exploiting the existing knowledge about the original scale of the included blocks during the dictionary updating process. Simulation results have shown that these developments allow significant improvements over the original MMP for smooth images, while keeping its state-of-the-art performance for more complex, less smooth ones, thus improving MMP''s universal character.
机译:在这项工作中,我们进一步开发了多维多尺度解析器(MMP)算法,这是一种最近提出的通用有损压缩方法,该方法已成功应用于图像以及其他类型的数据,如视频和ECG信号。 MMP基于近似的多尺度模式匹配,使用存储在字典中的模式的扩展和收缩版本对输入信号进行编码。使用先前编码的块的级联的扩展和压缩版本来更新字典。这意味着,在对输入数据进行编码时,MMP会使用输入本身的片段来构建自己的字典,这使其具有通用性。它提供了一种灵活的结构,可以轻松地将特定于数据的扩展添加到基本算法中。通常,要编码的信号属于狭窄类别,作为平滑图像之一。在这些情况下,人们期望通过引入有关要编码源的一些知识可以实现一些改进。在本文中,我们使用关于源平滑度的假设,以便为字典中的块概率创建良好的上下文模型。通过考虑因果块边界周围的平滑度约束来估计此类概率模型。此外,我们还通过在字典更新过程中利用有关所包含块的原始比例的现有知识来完善获得的概率模型。仿真结果表明,这些进展使原始MMP可以显着改善平滑图像,同时对于更复杂,较不平滑的图像仍保持其最先进的性能,从而改善了MMP的通用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号