首页> 外文期刊>IEEE Transactions on Image Processing >Robust Shape Tracking With Multiple Models in Ultrasound Images
【24h】

Robust Shape Tracking With Multiple Models in Ultrasound Images

机译:超声图像中多种模型的稳健形状跟踪

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses object tracking in ultrasound images using a robust multiple model tracker. The proposed tracker has the following features: 1) it uses multiple dynamic models to track the evolution of the object boundary, and 2) it models invalid observations (outliers), reducing their influence on the shape estimates. The problem considered in this paper is the tracking of the left ventricle which is known to be a challenging problem. The heart motion presents two phases (diastole and systole) with different dynamics, the multiple models used in this tracker try to solve this difficulty. In addition, ultrasound images are corrupted by strong multiplicative noise which prevents the use of standard deformable models. Robust estimation techniques are used to address this difficulty. The multiple model data association (MMDA) tracker proposed in this paper is based on a bank of nonlinear filters, organized in a tree structure. The algorithm determines which model is active at each instant of time and updates its state by propagating the probability distribution, using robust estimation techniques.
机译:本文介绍了使用健壮的多模型跟踪器在超声图像中进行对象跟踪的方法。提出的跟踪器具有以下特征:1)它使用多个动态模型来跟踪对象边界的演变,并且2)它对无效的观测值(异常值)进行建模,从而减少了它们对形状估计的影响。本文考虑的问题是左心室的追踪,这是一个具有挑战性的问题。心脏运动呈现出两个阶段(舒张期和收缩期),它们具有不同的动力学特性,该跟踪器中使用的多个模型试图解决这一难题。此外,超声图像会因强大的乘法噪声而损坏,从而无法使用标准的可变形模型。稳健的估算技术可用来解决这一难题。本文提出的多模型数据关联(MMDA)跟踪器基于以树状结构组织的一组非线性滤波器。该算法使用稳健的估算技术确定在每个时间点哪个模型处于活动状态,并通过传播概率分布来更新其状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号