首页> 外文期刊>Image Processing, IEEE Transactions on >Multiresolution Monogenic Signal Analysis Using the Riesz–Laplace Wavelet Transform
【24h】

Multiresolution Monogenic Signal Analysis Using the Riesz–Laplace Wavelet Transform

机译:使用Riesz-Laplace小波变换的多分辨率单声道信号分析

获取原文
获取原文并翻译 | 示例

摘要

The monogenic signal is the natural 2D counterpart of the 1D analytic signal. We propose to transpose the concept to the wavelet domain by considering a complexified version of the Riesz transform which has the remarkable property of mapping a real-valued (primary) wavelet basis of L2(R2) into a complex one. The Riesz operator is also steerable in the sense that it give access to the Hilbert transform of the signal along any orientation. Having set those foundations, we specify a primary polyharmonic spline wavelet basis of L2(R2) that involves a single Mexican-hat-like mother wavelet (Laplacian of a B-spline). The important point is that our primary wavelets are quasi-isotropic: they behave like multiscale versions of the fractional Laplace operator from which they are derived, which ensures steerability. We propose to pair these real-valued basis functions with their complex Riesz counterparts to specify a multiresolution monogenic signal analysis. This yields a representation where each wavelet index is associated with a local orientation, an amplitude and a phase. We give a corresponding wavelet-domain method for estimating the underlying instantaneous frequency. We also provide a mechanism for improving the shift and rotation-invariance of the wavelet decomposition and show how to implement the transform efficiently using perfect-reconstruction filterbanks. We illustrate the specific feature-extraction capabilities of the representation and present novel examples of wavelet-domain processing; in particular, a robust, tensor-based analysis of directional image patterns, the demodulation of interferograms, and the reconstruction of digital holograms.
机译:单基因信号是1D分析信号的自然2D对应物。我们建议通过考虑复杂化的Riesz变换将概念转换到小波域,该变换具有将L2(R2)的实值(主)小波基映射为复数的显着特性。 Riesz运算符在可以沿任何方向访问信号的希尔伯特变换的意义上也是可操纵的。奠定了这些基础之后,我们指定了一个L2(R2)的主要多谐波样条小波基,其中涉及一个像墨西哥帽一样的母小波(B样条的拉普拉斯算子)。重要的一点是,我们的主要子波是准各向同性的:它们的行为就像分数小数拉普拉斯算子的多尺度版本一样,这些小波衍生自它们,从而确保了可操纵性。我们建议将这些实值基础函数与其复杂的Riesz对应项配对,以指定多分辨率单基因信号分析。这产生了一个表示,其中每个小波索引都与一个局部方向,一个幅度和一个相位相关联。我们给出了相应的小波域方法来估计基本瞬时频率。我们还提供了一种改善小波分解的位移和旋转不变性的机制,并展示了如何使用完美重构滤波器组有效地实现变换。我们说明了表示的特定特征提取功能,并提出了小波域处理的新颖示例;特别是对方向性图像模式进行基于张量的鲁棒分析,干涉图的解调以及数字全息图的重建。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号