首页> 外文期刊>Image Processing, IEEE Transactions on >An Adaptable Image Retrieval System With Relevance Feedback Using Kernel Machines and Selective Sampling
【24h】

An Adaptable Image Retrieval System With Relevance Feedback Using Kernel Machines and Selective Sampling

机译:具有内核反馈和选择性采样的相关反馈的自适应图像检索系统

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an adaptable content-based image retrieval (CBIR) system developed using regularization theory, kernel-based machines, and Fisher information measure. The system consists of a retrieval subsystem that carries out similarity matching using image-dependant information, multiple mapping subsystems that adaptively modify the similarity measures, and a relevance feedback mechanism that incorporates user information. The adaptation process drives the retrieval error to zero in order to exactly meet either an existing multiclass classification model or the user high-level concepts using reference-model or relevance feedback learning, respectively. To facilitate the selection of the most informative query images during relevance feedback learning a new method based upon the Fisher information is introduced. Model-reference and relevance feedback learning mechanisms are thoroughly tested on a domain-specific image database that encompasses a wide range of underwater objects captured using an electro-optical sensor. Benchmarking results with two other relevance feedback learning methods are also provided.
机译:本文提出了一种使用正则化理论,基于内核的机器和Fisher信息测度开发的自适应基于内容的图像检索(CBIR)系统。该系统包括一个检索子系统,该子系统使用依赖于图像的信息进行相似性匹配;多个映射子系统可自适应地修改相似性度量;以及一个包含用户信息的相关性反馈机制。适应过程将检索误差驱动为零,以便分别使用参考模型或相关性反馈学习分别精确地满足现有的多类分类模型或用户高级概念。为了便于在相关性反馈学习期间选择最具信息量的查询图像,引入了一种基于Fisher信息的新方法。模型参考和相关性反馈学习机制已在特定领域的图像数据库上进行了全面测试,该数据库包含使用电光传感器捕获的各种水下物体。还提供了其他两种相关反馈学习方法的基准化结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号