首页> 外文期刊>Image Processing, IEEE Transactions on >Directly Manipulated Free-Form Deformation Image Registration
【24h】

Directly Manipulated Free-Form Deformation Image Registration

机译:直接操纵的自由形式变形图像配准

获取原文
获取原文并翻译 | 示例

摘要

Previous contributions to both the research and open source software communities detailed a generalization of a fast scalar field fitting technique for cubic B-splines based on the work originally proposed by Lee . One advantage of our proposed generalized B-spline fitting approach is its immediate application to a class of nonrigid registration techniques frequently employed in medical image analysis. Specifically, these registration techniques fall under the rubric of free-form deformation (FFD) approaches in which the object to be registered is embedded within a B-spline object. The deformation of the B-spline object describes the transformation of the image registration solution. Representative of this class of techniques, and often cited within the relevant community, is the formulation of Rueckert who employed cubic splines with normalized mutual information to study breast deformation. Similar techniques from various groups provided incremental novelty in the form of disparate explicit regularization terms, as well as the employment of various image metrics and tailored optimization methods. For several algorithms, the underlying gradient-based optimization retained the essential characteristics of Rueckert's original contribution. The contribution which we provide in this paper is two-fold: 1) the observation that the generic FFD framework is intrinsically susceptible to problematic energy topographies and 2) that the standard gradient used in FFD image registration can be modified to a well-understood preconditioned form which substantially improves performance. This is demonstrated with theoretical discussion and comparative evaluation experimentation.
机译:先前对研究和开源软件社区的贡献都基于Lee最初提出的工作,对立方B样条的快速标量场拟合技术进行了概括。我们提出的广义B样条拟合方法的一个优点是可以立即应用于医学图像分析中经常使用的一类非刚性配准技术。具体而言,这些配准技术属于自由形式变形(FFD)方法的范畴,在该方法中,要配准的对象嵌入B样条对象内。 B样条曲线对象的变形描述了图像配准解的变换。这类技术的代表,并且经常在相关社区中被引用,是Rueckert的公式,他使用立方样条和标准化的互信息来研究乳房变形。来自不同小组的类似技术以完全不同的显式正则化术语的形式提供了新颖性,以及采用了各种图像指标和量身定制的优化方法。对于几种算法,基于梯度的基础优化保留了Rueckert最初贡献的基本特征。我们在本文中提供的贡献有两个方面:1)观察到普通FFD框架本质上易受问题能量形貌的影响; 2)FFD图像配准中使用的标准梯度可以修改为易于理解的预处理大幅改善性能的表格。理论讨论和比较评估实验证明了这一点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号