首页> 外文期刊>Image Processing, IEEE Transactions on >Microtubule Dynamics Analysis Using Kymographs and Variable-Rate Particle Filters
【24h】

Microtubule Dynamics Analysis Using Kymographs and Variable-Rate Particle Filters

机译:使用运动记录仪和可变速率颗粒过滤器的微管动力学分析

获取原文
获取原文并翻译 | 示例

摘要

Studying intracellular dynamics is of fundamental importance for understanding healthy life at the molecular level and for developing drugs to target disease processes. One of the key technologies to enable this research is the automated tracking and motion analysis of these objects in microscopy image sequences. To make better use of the spatiotemporal information than common frame-by-frame tracking methods, two alternative approaches have recently been proposed, based upon either Bayesian estimation or space-time segmentation. In this paper, we propose to combine the power of both approaches, and develop a new probabilistic method to segment the traces of the moving objects in kymograph representations of the image data. It is based on variable-rate particle filtering and uses multiscale trend analysis of the extracted traces to estimate the relevant kinematic parameters. Experiments on realistic synthetically generated images as well as on real biological image data demonstrate the improved potential of the new method for the analysis of microtubule dynamics in vitro.
机译:研究细胞内动力学对于在分子水平上了解健康生活以及开发针对疾病过程的药物至关重要。进行这项研究的关键技术之一是在显微镜图像序列中对这些对象进行自动跟踪和运动分析。为了更好地利用时空信息,而不是使用常见的逐帧跟踪方法,最近基于贝叶斯估计或时空分割提出了两种替代方法。在本文中,我们建议结合这两种方法的功能,并开发一种新的概率方法,以图像数据的运动图形表示来分割运动对象的轨迹。它基于可变速率粒子滤波,并对提取的迹线进行多尺度趋势分析以估计相关的运动学参数。在真实的合成图像以及真实的生物图像数据上进行的实验表明,这种新方法在体外分析微管动力学方面具有更大的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号