首页> 外文期刊>Image Processing, IEEE Transactions on >A Label Field Fusion Bayesian Model and Its Penalized Maximum Rand Estimator for Image Segmentation
【24h】

A Label Field Fusion Bayesian Model and Its Penalized Maximum Rand Estimator for Image Segmentation

机译:用于图像分割的标签场融合贝叶斯模型及其损失最大兰德估计

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel segmentation approach based on a Markov random field (MRF) fusion model which aims at combining several segmentation results associated with simpler clustering models in order to achieve a more reliable and accurate segmentation result. The proposed fusion model is derived from the recently introduced probabilistic Rand measure for comparing one segmentation result to one or more manual segmentations of the same image. This non-parametric measure allows us to easily derive an appealing fusion model of label fields, easily expressed as a Gibbs distribution, or as a nonstationary MRF model defined on a complete graph. Concretely, this Gibbs energy model encodes the set of binary constraints, in terms of pairs of pixel labels, provided by each segmentation results to be fused. Combined with a prior distribution, this energy-based Gibbs model also allows for definition of an interesting penalized maximum probabilistic rand estimator with which the fusion of simple, quickly estimated, segmentation results appears as an interesting alternative to complex segmentation models existing in the literature. This fusion framework has been successfully applied on the Berkeley image database. The experiments reported in this paper demonstrate that the proposed method is efficient in terms of visual evaluation and quantitative performance measures and performs well compared to the best existing state-of-the-art segmentation methods recently proposed in the literature.
机译:本文提出了一种基于马尔可夫随机场(MRF)融合模型的新颖分割方法,该方法旨在结合与更简单的聚类模型相关联的几种分割结果,以获得更可靠,准确的分割结果。所提出的融合模型来自最近引入的概率兰德度量,用于将一个分割结果与同一图像的一个或多个手动分割进行比较。这种非参数测度使我们可以轻松地得出引人注目的标签字段融合模型,可以轻松表达为Gibbs分布或完整图上定义的非平稳MRF模型。具体地,该吉布斯能量模型根据由要融合的每个分割结果提供的成对的像素标记对像素约束对进行编码。与基于先验的分布相结合,这种基于能量的吉布斯模型还可以定义一个有趣的惩罚最大概率兰德估计量,通过该估计量,简单,快速估计的分割结果的融合似乎可以代替文献中现有的复杂分割模型。该融合框架已成功应用于伯克利图像数据库。本文报道的实验表明,该方法在视觉评估和定量性能指标方面是有效的,并且与最近文献中提出的最佳现有的最新分割方法相比,其效果很好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号