首页> 外文期刊>Image Processing, IEEE Transactions on >Video Segmentation Based on Motion Coherence of Particles in a Video Sequence
【24h】

Video Segmentation Based on Motion Coherence of Particles in a Video Sequence

机译:基于视频序列中粒子运动相干性的视频分割

获取原文
获取原文并翻译 | 示例

摘要

This work describes an approach for object-oriented video segmentation based on motion coherence. Using a tracking process based on adaptively sampled points (namely, particles), 2-D motion patterns are identified with an ensemble clustering approach. Particles are clustered to obtain a pixel-wise segmentation in space and time domains. The segmentation result is mapped to an image spatio-temporal feature space. Thus, the different constituent parts of the scene that move coherently along the video sequence are mapped to volumes in this spatio-temporal space. These volumes make the redundancy in the temporal sense more explicit, leading to potential gains in video coding applications. The proposed solution is robust and more generic than similar approaches for 2-D video segmentation found in the literature. In order to illustrate the potential advantages of using the proposed motion segmentation approach in video coding applications, the PSNR of the temporal predictions and the entropies of prediction errors obtained in our experiments are presented, and compared with other methods. Our experiments with real and synthetic sequences suggest that our method also could be used in other image processing and computer vision tasks, besides video coding, such as video information retrieval and video understanding.
机译:这项工作描述了一种基于运动相干性的面向对象视频分割的方法。使用基于自适应采样点(即粒子)的跟踪过程,通过整体聚类方法识别二维运动模式。粒子聚类以获得空间和时域中的像素级分割。分割结果被映射到图像时空特征空间。因此,沿视频序列连贯移动的场景的不同组成部分被映射到该时空空间中的体积。这些容量使时间意义上的冗余更加明确,从而导致视频编码应用中的潜在收益。所提出的解决方案比文献中发现的用于2D视频分割的类似方法更可靠,更通用。为了说明在视频编码应用中使用所提出的运动分割方法的潜在优势,提出了在我们的实验中获得的时间预测的PSNR和预测误差的熵,并将其与其他方法进行了比较。我们对真实序列和合成序列进行的实验表明,我们的方法除了视频编码(例如视频信息检索和视频理解)以外,还可以用于其他图像处理和计算机视觉任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号