首页> 外文期刊>Image Processing, IEEE Transactions on >On-line Learning of Mutually Orthogonal Subspaces for Face Recognition by Image Sets
【24h】

On-line Learning of Mutually Orthogonal Subspaces for Face Recognition by Image Sets

机译:基于图像集的人脸识别的正交子空间在线学习

获取原文
获取原文并翻译 | 示例

摘要

We address the problem of face recognition by matching image sets. Each set of face images is represented by a subspace (or linear manifold) and recognition is carried out by subspace-to-subspace matching. In this paper, 1) a new discriminative method that maximises orthogonality between subspaces is proposed. The method improves the discrimination power of the subspace angle based face recognition method by maximizing the angles between different classes. 2) We propose a method for on-line updating the discriminative subspaces as a mechanism for continuously improving recognition accuracy. 3) A further enhancement called locally orthogonal subspace method is presented to maximise the orthogonality between competing classes. Experiments using 700 face image sets have shown that the proposed method outperforms relevant prior art and effectively boosts its accuracy by online learning. It is shown that the method for online learning delivers the same solution as the batch computation at far lower computational cost and the locally orthogonal method exhibits improved accuracy. We also demonstrate the merit of the proposed face recognition method on portal scenarios of multiple biometric grand challenge.
机译:我们通过匹配图像集来解决人脸识别问题。每组脸部图像由一个子空间(或线性流形)表示,并通过子空间到子空间的匹配进行识别。在本文中,1)提出了一种新的判别方法,该方法使子空间之间的正交性最大化。该方法通过最大化不同类别之间的角度来提高基于子空间角度的面部识别方法的辨别能力。 2)我们提出了一种在线更新判别子空间的方法,作为不断提高识别精度的一种机制。 3)提出了进一步的增强功能,称为局部正交子空间方法,以最大化竞争类之间的正交性。使用700个面部图像集的实验表明,该方法优于相关的现有技术,并通过在线学习有效地提高了其准确性。结果表明,在线学习方法以较低的计算成本提供了与批量计算相同的解决方案,而局部正交方法显示出更高的准确性。我们还展示了在多生物特征重大挑战的门户场景中提出的人脸识别方法的优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号