首页> 外文期刊>Image Processing, IEEE Transactions on >Bootstrap Resampling for Image Registration Uncertainty Estimation Without Ground Truth
【24h】

Bootstrap Resampling for Image Registration Uncertainty Estimation Without Ground Truth

机译:自举重采样,无需地面真相即可进行图像配准不确定度估计

获取原文
获取原文并翻译 | 示例

摘要

We address the problem of estimating the uncertainty of pixel based image registration algorithms, given just the two images to be registered, for cases when no ground truth data is available. Our novel method uses bootstrap resampling. It is very general, applicable to almost any registration method based on minimizing a pixel-based similarity criterion; we demonstrate it using the SSD, SAD, correlation, and mutual information criteria. We show experimentally that the bootstrap method provides better estimates of the registration accuracy than the state-of-the-art Cramer-Rao bound method. Additionally, we evaluate also a fast registration accuracy estimation (FRAE) method which is based on quadratic sensitivity analysis ideas and has a negligible computational overhead. FRAE mostly works better than the Cramer-Rao bound method but is outperformed by the bootstrap method.
机译:对于仅提供两个要配准的图像的情况,我们在没有地面真实数据可用的情况下,解决了估计基于像素的图像配准算法的不确定性的问题。我们的新颖方法使用自举重采样。它非常通用,适用于几乎所有基于最小化基于像素的相似性准则的配准方法;我们使用SSD,SAD,关联和互信息标准对其进行演示。我们通过实验证明,引导程序方法比最新的Cramer-Rao绑定方法提供更好的估计套准精度。此外,我们还评估了基于二次灵敏度分析思想且计算开销可忽略不计的快速配准精度估计(FRAE)方法。 FRAE通常比Cramer-Rao绑定方法更好,但在引导方法方面却表现不佳。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号