首页> 外文期刊>Image Processing, IEEE Transactions on >Learning-Based Prediction of Visual Attention for Video Signals
【24h】

Learning-Based Prediction of Visual Attention for Video Signals

机译:基于学习的视频信号视觉注意力预测

获取原文
获取原文并翻译 | 示例

摘要

Visual attention, which is an important characteristic of human visual system, is a useful clue for image processing and compression applications in the real world. This paper proposes a computational scheme that adopts both low-level and high-level features to predict visual attention from video signal by machine learning. The adoption of low-level features (color, orientation, and motion) is based on the study of visual cells, and the adoption of the human face as a high-level feature is based on the study of media communications. We show that such a scheme is more robust than those using purely single low- or high-level features. Unlike conventional techniques, our scheme is able to learn the relationship between features and visual attention to avoid perceptual mismatch between the estimated salience and the actual human fixation. We also show that selecting the representative training samples according to the fixation distribution improves the efficacy of regressive training. Experimental results are shown to demonstrate the advantages of the proposed scheme.
机译:视觉注意力是人类视觉系统的重要特征,它是现实世界中图像处理和压缩应用的有用线索。本文提出了一种计算方案,该方案同时采用了低级和高级功能,可以通过机器学习从视频信号中预测视觉注意力。低级特征(颜色,方向和运动)的采用基于对视觉单元的研究,而人脸作为高级特征的采用则基于对媒体传播的研究。我们表明,这种方案比仅使用单个低级或高级功能的方案更可靠。与传统技术不同,我们的方案能够了解特征与视觉注意之间的关系,从而避免在估计的显着性与实际的人体注视之间出现感知上的不匹配。我们还表明,根据注视分布选择具有代表性的训练样本可以提高回归训练的效果。实验结果表明了该方案的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号